Time dilation and length contraction

AdamBenHamo
Messages
13
Reaction score
0
I've recently been thinking more about special relativity, and while I understand the Lorentz factor and how to apply it to find correct solutions, I'm still stuck on the link between the effects of length contraction and time dilation, are they permutation of the same thing from different reference frames? How do they link together mathematically? Any light shed on this at all would be really helpful! Thanks in advance!

AdamBenHamo
 
Physics news on Phys.org
Time dilation and length contraction are both manifestations of the invarience of the speed of light.
That is how they are related. It's similar to regular/Galilean relativity only for 4D.
 
Time dilation and length contraction are connected geometrically, through a construct called minkowski space. Roughly speaking, you define this space by: ds^2 = -c^2dt^2 + dx^2 + dy^2 + dz^2. Lorentz transformations are just symmetries in this mathematical picture (SO(1,3) symmetries, basically just rotations with some funky properties because minkowski space isn't exactly R^4*). Because they are symmetries of this space, then the length of any path computed in this space should be the same in two different reference frames.

This is often written like this:

I = -(cΔt)^2 + (Δx)^2

where I is invariant under Lorentz transformations. This might be a bit confusing, so I'll re-explain this from an angle you are likely to understand:

In R^3, you can compute the distance between two points using: ds^2 = dx^2 + dy^2 + dz^2. This has a symmetry SO(3), or rotations in 3 dimensions. The distance:

I = (Δx)^2 + (Δy)^2 + (Δz)^2

Remains unchanged when you rotate it.

Physically, I (in special relativity) could be a combined measurement of the length of an object, and the time between two events. If you "rotate" this, or apply a Lorentz transformation to it, Δt and Δx will change. But since I is invariant under this, they must transform in a related way so that their sum stays the same.

* Technically, I should say "minkowski space isn't exactly R^4 with the usual metric"
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top