Time ordering operator, interaction Lagrangian, QED

askalot
Messages
22
Reaction score
0

Homework Statement


I am trying to calculate the following quantity:
$$<0|T\{\phi^\dagger(x_1) \phi(x_2) exp[i\int{L_1(x)dx}]\}|0>$$

where:

$$ L_1(x) = -ieA_{\mu}[\phi^*
(\partial_\mu \phi ) - (\partial_\mu \phi^*)\phi] $$[/B]

I am trying to find an expression including the propagators, wick's theorem, and then calculate the Feynman diagrams in position space.
The solution should include terms of up to ## e^2 ## order.

Homework Equations

The Attempt at a Solution


I am not sure if the Lagrangian ## L_1(x) ## is the interaction Lagrangian, so that I should use it as it is in the integral, or if I should extract an interaction Lagrangian out of it.
I also have to tell you that I am not expected to calculate complex integrals in every detail, or be occupied with infinities.
[/B]
 
askalot said:
I am not sure if the Lagrangian ## L_1(x) ## is the interaction Lagrangian, so that I should use it as it is in the integral,

Look in your problem statement. It says "where L1(x) = ... " and L1(x) is what appears in the integral.

As to solving the problem: Look up the properties of the time-ordering operator and the nature of the <0| and |0> . There are operations you can perform on the T operator to simplify your expression. Your text should give you some examples of what I am talking about.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top