Torque equilbrium involving support rod?

AI Thread Summary
A uniform 300-kg beam is supported by a strut and has a load suspended from its end, with a maximum compression of 23,000 N allowed in the strut. The discussion revolves around calculating the maximum mass that can be suspended while maintaining torque equilibrium. The initial attempt involved summing torque moments but was incorrect due to not properly accounting for the upward force exerted by the strut. The corrected approach includes using the net torque equation, factoring in the upward force and the geometry of the setup. The final calculation yields a maximum load mass of approximately 788 kg.
genessis42
Messages
2
Reaction score
0

Homework Statement



A uniform 300-kg beam, 6 m long, is freely pivoted at P. The beam is supported in a horizontal position by a light strut, 5 m long, which is freely pivoted at Q and is loosely pinned to the beam at R. A load of mass is suspended from the end of the beam at S. A maximum compression of 23,000 N in the strut is permitted, due to safety. In Fig. 11.1, the maximum mass M of the load is closest to:

11.1.jpg

Homework Equations



Net Torque=0
Net Force=0

The Attempt at a Solution



I tried adding up all of the torque moments and then setting them equal to 23,000N.

300(9.8)(3m)+0(Pivot arm)+6m(mg for the mass)=23,000

Then I set that net torque equal to 23,000, isolated force of the mass, and divided by 9.8 m/s^2 in order to find the maximum mass. It's still wrong, and I don't know where to go from here
 
Physics news on Phys.org
You should start from writing down the equations of equilibrium. Don't plug in any numbers just yet, use letters for everything.
 
Just figured it out.


I have to take the 23,000 maximum force into account that is exerted upwards.

So Net Torque=

0(0)(at the Pivot P)+ (-300kg*9.8)(3m) + -x(6m) + 23,000(4/5)

Its 4/5*23,000 because that is how much is being exerted upwards after looking at the triangle.

We solve for x, and divide by 9.8, to get 788 Kg
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top