Total internal refraction inside an optical fiber

AI Thread Summary
Total internal reflection in an optical fiber occurs when the angle of incidence exceeds the critical angle. The critical angle can be calculated using Snell's Law, where the index of refraction for air is assumed to be 1. In this case, the angle θ is 47°, leading to a calculated minimum index of refraction of 1.37. However, the correct minimum index of refraction required for total internal reflection is actually 1.47, indicating that θ is not the angle of incidence. Understanding the distinction between the angles is crucial for accurate calculations in optical fiber applications.
HunterDX77M
Messages
42
Reaction score
0

Homework Statement



In the attachment below, a ray of light undergoes total internal reflection in an optical fiber such that the angle θ between the ray and the interface is 47°. Assuming the fiber is surrounded by air, what is the minimum index of refraction necessary for this to occur?

Homework Equations


Snell's Law:
n_1 sin(\theta_1) = n_2 sin(\theta_2)

Assume the index of refraction for air is n = 1.

The Attempt at a Solution



Total internal refraction occurs when the light ray is incident to the air at an angle greater than the critical angle, θc. At the critical angle, the refracted light makes a right angle. So . . .

<br /> n_1 sin(\theta_c) = n_2 sin(90 \circ) = n_2<br />
n_1 = n_2 \div sin(\theta_c) = 1 \div sin(47 \circ) = 1.37

But the correct answer is supposed to be 1.47. Why is that?
 

Attachments

  • Selection_008.png
    Selection_008.png
    9.7 KB · Views: 444
Physics news on Phys.org
Hint: θ is not the angle of incidence.
 
  • Like
Likes 1 person
. . . . . .. . . . . . . . . . . ,.-‘”. . . . . . . . . .``~.,
. . . . . . . .. . . . . .,.-”. . . . . . . . . . . . . . . . . .“-.,
. . . . .. . . . . . ..,/. . . . . . . . . . . . . . . . . . . . . . . ”:,
. . . . . . . .. .,?. . . . . . . . . . . . . . . . . . . . . . . . . . .\,
. . . . . . . . . /. . . . . . . . . . . . . . . . . . . . . . . . . . . . ,}
. . . . . . . . ./. . . . . . . . . . . . . . . . . . . . . . . . . . ,:`^`.}
. . . . . . . ./. . . . . . . . . . . . . . . . . . . . . . . . . ,:”. . . ./
. . . . . . .?. . . __. . . . . . . . . . . . . . . . . . . . :`. . . ./
. . . . . . . /__.(. . .“~-,_. . . . . . . . . . . . . . ,:`. . . .. ./
. . . . . . /(_. . ”~,_. . . ..“~,_. . . . . . . . . .,:`. . . . _/
. . . .. .{.._$;_. . .”=,_. . . .“-,_. . . ,.-~-,}, .~”; /. .. .}
. . .. . .((. . .*~_. . . .”=-._. . .“;,,./`. . /” . . . ./. .. ../
. . . .. . .\`~,. . ..“~.,. . . . . . . . . ..`. . .}. . . . . . ../
. . . . . .(. ..`=-,,. . . .`. . . . . . . . . . . ..(. . . ;_,,-”
. . . . . ../.`~,. . ..`-.. . . . . . . . . . . . . . ..\. . /\
. . . . . . \`~.*-,. . . . . . . . . . . . . . . . . ..|,./...\,__
,,_. . . . . }.>-._\. . . . . . . . . . . . . . . . . .|. . . . . . ..`=~-,
. .. `=~-,_\_. . . `\,. . . . . . . . . . . . . . . . .\
. . . . . . . . . .`=~-,,.\,. . . . . . . . . . . . . . . .\
. . . . . . . . . . . . . . . . `:,, . . . . . . . . . . . . . `\. . . . . . ..__
. . . . . . . . . . . . . . . . . . .`=-,. . . . . . . . . .,%`>--==``
. . . . . . . . . . . . . . . . . . . . _\. . . . . ._,-%. . . ..`


. . . Thank you.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top