Transformation from Cartesian to spherical polar coordinates

andrey21
Messages
475
Reaction score
0
Transformation from Cartesian to spherical polar coordinates

In dimensions:

x=r sinθ cos \varphi and y= r sin θ sin \varphi z=r cos θ

Show one example of:

∂z\alpha/ ∂xμ . ∂xμ/ ∂z\alpha = δ\alpha\beta

Now here is my answer:

δyx=(∂y/∂r . ∂r/∂x) + (∂y/∂θ . ∂θ/∂x) + (∂y/∂\varphi . ∂\varphi/∂x)



Is this correct? If not where have I made an error... Thank you
 
Physics news on Phys.org


Just like to pick up in this old thread, still having trouble with the question.

Using what I have already done:

δrθ=(∂r/∂x . ∂x/∂θ) + (∂r/∂y . ∂y/∂θ) + (∂r/∂z . ∂z/∂θ) (1)

Where:

x=r sin θ cos φ and y= r sin θ sin φ z= r cos θ

Would (1) then become:

δyx= = ((sin θ cos φ) . ( r cos θ cos φ)) + ((sin θ sin φ) . (cos θ sin φ)) + ((cos θ) . (-r sin θ))

Then multiply out the brackets and simplify
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top