Transformation rule for product of 3rd, 2nd order tensors

krabbie
Messages
4
Reaction score
0
1. Problem statement:

Assume that u is a vector and A is a 2nd-order tensor. Derive a transformation rule for a 3rd order tensor Zijk such that the relation ui = ZijkAjk remains valid after a coordinate rotation.

Homework Equations

:
[/B]
Transformation rule for 3rd order tensors: Z'ijk = CilCjmCknZlmn. Transformation rule of 2nd order tensors: A'jk = CjmCknAmn. Transformation rule for 1st order tensors: u'i = Cilul.3. My attempt:

To begin with, I am confused as to the wording of this question. I assume that it means: come up with an expression for Z'ijk such that the relation u'i = Z'ijkA'jk holds, but if I am wrong, I would appreciate an explanation of what we are trying to do! If I am correct, then I don't see why the normal transformation rule for third order tensors does not work here. I have:

Z'ijkA'jk = CilCjmCknZlmnCjmCknAmn = CilZlmnAmn = u'i

I think I've done something very wrong here, but I am unfamiliar with tensors and I don't know how to go about fixing it. Help would be much appreciated, thank you!
 
Physics news on Phys.org
Not much wrong with your work. I do have a quibble with your derivation. When writing A'(j,k)= C(j.m)C(k,n)A(m,n) you should use different dummy variables to prevent confusion with the dummy variables in the expression for Z. Thus A'(j,k)= C(j.p)C(k,q)A(p,q) is better. Then you can collapse the C matrices using the relation C(j,p)C(j,m) = delta(p.m). You get to the same answer.
 
  • Like
Likes krabbie
davidmoore63@y said:
Not much wrong with your work. I do have a quibble with your derivation. When writing A'(j,k)= C(j.m)C(k,n)A(m,n) you should use different dummy variables to prevent confusion with the dummy variables in the expression for Z. Thus A'(j,k)= C(j.p)C(k,q)A(p,q) is better. Then you can collapse the C matrices using the relation C(j,p)C(j,m) = delta(p.m). You get to the same answer.
Ah, I see what you mean. Thanks for the input! The new notation helps.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top