Transforming Derivative Operator in Spherical Coordinates with Substitution

elquin
Messages
1
Reaction score
0
In spherical coordinates, the operator is defined as

\frac{\partial^2}{\partial \theta^2}+\cot \theta \frac{\partial}{\partial \theta}

Then, substitute

\mu = \cos \theta

and the above is changed to

(1-\mu^2)\frac{d^2}{d \mu^2}-2 \mu \frac{d}{d \mu}

I don't know how the last expression is obtained.
Please, help me...
 
Physics news on Phys.org
as mu is only a function of theta, could you start with
<br /> \frac{\partial}{\partial \theta} = \frac{\partial \mu}{\partial \theta} \frac{\partial }{\partial \mu}<br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top