Transforming functions of random variables (exponential->Weibull)

slaux89
Messages
4
Reaction score
0

Homework Statement



Suppose X has an exponential with parameter L and Y=X^(1/a).
Find the density function of Y. This is the Weibull distribution

Homework Equations





The Attempt at a Solution



X~exponential (L) => fx(s)= Le^(-Ls)

Fx(s)=P(X<s) = 1-e^(-Ls)

P(Y<s)=P(X^(1/a)<s)=P(X<s^a)= 1-e^(-L[s^a])= Fy(s)

thus fy(s) = La(s^[a-1])e^(-L[s^a))

However, this doesn't seem to be the Weibull distribution. Did I do something wrong? Or is this just a variation of it?
 
Physics news on Phys.org
Looks fine to me.
 
Alright, thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top