Translational Kinetic Energies + Plane

AI Thread Summary
The discussion focuses on finding the ratio of translational kinetic energies for a ring, a coin, and a solid sphere at the bottom of an inclined plane, assuming pure rolling without slipping. Participants clarify that the translational kinetic energy (T.K.) is influenced by the moment of inertia and the linear velocities of the objects. The correct approach involves using potential energy (PE) and relating it to kinetic energy (KE) for each object, noting that they all start from the same height and mass. The final ratio of translational kinetic energies is suggested to be 21:28:30, derived from the respective equations. Understanding the relationship between the center of mass velocity and the rolling object's edge velocity is emphasized as crucial for solving the problem.
Kishor Bhat
Messages
21
Reaction score
0

Homework Statement


Find the ratio of the translational kinetic energies of a ring, a coin, and a solid sphere at the bottom of an inclined plane. The bodies have been released from rest at the top. Assume pure rolling without any slipping.


The Attempt at a Solution



Well, I'm really not sure. Since T.K.=1/2 m*v^2, we need to look at linear velocities v at the bottom of the plane for each object. Obviously the rotation will influence this, and I've tried obtaining final ω and using v=ωr at the bottom, but I'm not getting the answer. Which, by the way, is 21:28:30.
 
Physics news on Phys.org
Perhaps you are confusing the linear velocity from v=ωr, which is the instantaneous velocity of the edge of the rolling object, with the linear velocity of the center of mass of the object.

Beside that, are you using the correct moments of inertia for the different objects? I'm assuming the masses and radii are all the same.
 
The MI's are correct, and yes, they are all of same mass and radius. One question: can we find the acceleration of c.o.m and then use the equations of motion to find final velocity? I haven't tried that.
 
PICsmith said:
Perhaps you are confusing the linear velocity from v=ωr, which is the instantaneous velocity of the edge of the rolling object, with the linear velocity of the center of mass of the object.

Nevermind this statement...while yes they are different things, in this case they are the same velocity (the center of mass velocity in the frame at rest w.r.t. the ramp is of course the same as the linear velocity of the edge in the co-moving frame, since there is no slipping).

You don't have to calculate any velocites. Here's how you go about it. For example, for the ring you have KE = PE-RE = PE-(1/2)Iω^2 = PE-(1/2)mv^2 = PE-KE, and so you have KE=PE/2. Obtain the KE in terms of PE for the other two objects, and then you can take the ratios between them.

Edit: Keep in mind that the PE for each object is the same since they all start at the same height and have the same mass.
 
Last edited:
Gracias.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top