Tricky integral inequality question

spanishmaths
Messages
4
Reaction score
0

Homework Statement


Prove the following inequality:

\frac{1}{6}\leq\int_{R}\frac{1}{y^{2}+x+1}\chi_{B}(x,y)dxdy\leq\frac{1}{2}

where B={(x,y)|0\leq (x)\leq (y)\leq1} and R=[0,1]x[0,1]
EDIT: The B region should be 0 less than or equal to x less than or equal to y less than or equal to 1.

Homework Equations


I understand the \chi_{B} to be the characteristic function, ie takes value 1 if x is in B, and zero else.

The Attempt at a Solution


I've bashed my head against a wall for ages with this one. It keeps coming out wrong and different every time.
I don't know if whether to solve it is to brute force integrate on the double integral the function like so:
\int^{1}_{0}\int^{y}_{0}\frac{1}{y^{2}+x+1}dxdy (or equivalently the second integral between x and 1, and do dydx, which i believe is the same thing.)

Is this the right thing to do? Or is there a much quicker, shortcut way of doing it?
Many thanks,
 
Physics news on Phys.org
spanishmaths said:

Homework Statement


Prove the following inequality:

\frac{1}{6}\leq\int_{R}\frac{1}{y^{2}+x+1}\chi_{B}(x,y)dxdy\leq\frac{1}{2}

where B={(x,y)|0\leq (x)\leq (y)\leq1} and R=[0,1]x[0,1]
EDIT: The B region should be 0 less than or equal to x less than or equal to y less than or equal to 1.

Homework Equations


I understand the \chi_{B} to be the characteristic function, ie takes value 1 if x is in B, and zero else.


The Attempt at a Solution


I've bashed my head against a wall for ages with this one. It keeps coming out wrong and different every time.
I don't know if whether to solve it is to brute force integrate on the double integral the function like so:
\int^{1}_{0}\int^{y}_{0}\frac{1}{y^{2}+x+1}dxdy (or equivalently the second integral between x and 1, and do dydx, which i believe is the same thing.)

Is this the right thing to do?
I'm reasonably sure it's not.
spanishmaths said:
Or is there a much quicker, shortcut way of doing it?
Many thanks,
I would start by find the largest value and the smallest value of 1/(y^2 + x + 1) on your region, and finding solids that overestimate and underestimate the volume beneath the surface.
 
Ah that´s great thanks. So that proves it for when (x,y) are in B.
But when (x,y) are not in B, then we are integrating the function 0 on the interval R=[0,1]x[0,1] with limits of integration 0,1 and x,1 as above, which is 0...
Which is evidently not between 1/6 and 1/2...
So it is only proved for when x,y is in B, and not otherwise...? I'm confused.
It is not true whenever x is greater than y.
?
 
spanishmaths said:
Ah that´s great thanks. So that proves it for when (x,y) are in B.
But when (x,y) are not in B, then we are integrating the function 0 on the interval R=[0,1]x[0,1] with limits of integration 0,1 and x,1 as above, which is 0...
Which is evidently not between 1/6 and 1/2...
So it is only proved for when x,y is in B, and not otherwise...?
You don't need to deal with points that aren't in the B region. Do you understand what this region looks like? It is a triangle.
spanishmaths said:
I'm confused.
It is not true whenever x is greater than y.
?
It doesn't matter about points in [0, 1] X [0, 1] for which x >= y. All you need to be concerned with are the points in B.

The solid whose volume you are estimating (with a lower bound and an upper bound) has a triangle base, and the upper surface is curved. The function z = 1/(y2 + x + 1) is continuous on B and is decreasing as x and y increase away from (0, 0), so there are a largest function value and a smallest function value. The two triangle-shaped solids whose heights are the smallest z-value and the largest z-value have volumes that are the lower and upper bounds, respectively.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top