ganondorf29
- 49
- 0
Homework Statement
\int sin^3(2x) dx
Homework Equations
sin^2(x) + cos^2(x) = 1
The Attempt at a Solution
First I try to get the integral in the form of \intsin^3(u) and I do this by u-substitution.
\int sin^3(2x) dx
u = 2x
du = 2dx
dx = du/2
So the new integral looks as such:
\frac{1}{2}\int sin^3(u) du = \frac{1}{2}\int sin^2(u) * sin(x) du
= \frac{1}{2}\int (1-cos^2(u)) * sin(u) du
I do another substitution with 'w'
w = cos(u)
dw = -sin(u) du
du = -dw / sin(u)
\frac{1}{2}\int (1-w^2) * sin(u) -dw / sin(u)
\frac{-1}{2}[w - \frac{w^3}{3} + C]
Now I place u and w with their respective substitution
\frac{-1}{2}[cos(u) - \frac{\cos^3(u)}{3} + C]
\frac{-1}{2}[cos(2x) - \frac{cos^3(2x)}{3} + C]
I don't know where I'm going wrong. Can someone help tell me what/where I messed up