3.141592654
- 85
- 0
Homework Statement
I have to find the definite integral with limits of integration of 1 to \sqrt{3} for:
\int\frac{\sqrt{1+x^2}}{x^2}
Homework Equations
The Attempt at a Solution
I used trig. sub., so I have:
x=tan \theta
dx=(sec \theta)^2
So:
=\int\frac{\sqrt{1+(tan \theta)^2}}{(tan\theta)^2}(sec \theta)^2 d\theta
=\int\frac{\sqrt{(sec \theta)^2}}{(tan\theta)^2}(sec \theta)^2 d\theta
=\int\frac{(sec \theta)^3d\theta}{(tan\theta)^2}
I can play around with U-sub or Trig. identities but I'm missing something.