teneleven
- 12
- 0
Homework Statement
\int\frac{dx}{\sqrt{x^2 + 16}}
Homework Equations
x = 4\tan\theta
dx = 4\sec^2\theta \ d\theta
The Attempt at a Solution
\int\frac{4\sec^2\theta}{\sqrt{16\tan^2\theta + 16}}\ d\theta
\int\frac{4\sec^2\theta}{\sqrt{16(\tan^2\theta + 1)}}\ d\theta
\int\frac{4\sec^2\theta}{4\sec\theta}\ d\theta
\int\sec\theta\ d\theta
How do I reduce past this step?
Integration by parts returns me to \int\sec\theta\ d\theta
The answer at the back of the book is as follows: \ln(\sqrt{x^2 + 16} + x) + C
Thanks.
EDIT: notational mistakes corrected.
Last edited: