Triple integral to find the volume

edough
Messages
8
Reaction score
0

Homework Statement



use a triple integral to find the volume of the region that is common to the interiors of z^2 +y^2 + z^2 = 1 and x^2 + z^2 = 1

Homework Equations



Would I just calculate the are of the disc? I set up a triple integral as inte [0 to 1] 2nd inte [0 to sqrt(1-z^2)] 3rd inte [0 to 0] dy dx dz
That doesn't really work though since after the first integration it would just be 0 (??)
How would you set up this triple integral? (I might just not be understanding what the region is??)
 
Physics news on Phys.org
This isn't a double integral, so the region of integration isn't a disk or other two-dimensional object. The region of integration is the three-dimensional space that is "common to the interiors of z^2 +y^2 + z^2 = 1 and x^2 + z^2 = 1."
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top