Trouble evaluating the integral for a rational function

uwludd
Messages
1
Reaction score
0

Homework Statement


i've tried many partial fraction methods but none of y answers are correct in the end, please help me evaluate the integral for f(x)= (10x+2)/(x-5)(x^2 + 1)


Homework Equations



there are no relevant equations given

The Attempt at a Solution



A/x-5 + Bx+C/x^2 +1
 
Physics news on Phys.org
So now you have

\frac{A(x^2+1)+(Bx+C)(x-5)}{(x-5)(x^2+1)}= \frac{10x+2}{(x-5)(x^2+1)}


So equating the numerators

A(x^2+1)+(Bx+C)(x-5)= 10x+2 for all values of x.

Try putting suitable values of x which will eliminate most of the constants. For example, x=5 will help you get A.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top