Trojan666ru said:
In the beginning all three boxes were at rest relative to each other. It is also clear that from all three observers point of view the distances are well defined (ie 4Ly in total and in the middle a half silvered mirror)
I answered this post already but it wasn't a very good answer.
Now I want to show how each observer/object can use radar signals and other observations to determine the answers to all your questions. The important point is that they each will follow the exact same procedure that you described in your very first post where the observer sends signals to the other objects and watches for the echo to get back to him, along with his observation of the time on the other objects' clocks so that he can verify how far away they are from him. And most importantly, the apply Einstein's convention that light travels in all directions at c. It is this one fact that makes the simultaneity issues different in each frame.
So for this purpose, we need to have clocks attached to each object (not just inactive stopwatches that are started at a particular time). We will assume that all three clocks are synchronized to the Coordinate Time in the defining Inertial Reference Frame (IRF) that applies when all three objects are in mutual rest. Here is a spacetime diagram for the defining IRF with Proper Time markings for the red and green boxes. The Proper Time for the blue coordinator matches the Coordinate Time so I didn't make special markings for him. I had to continue the scenario on both ends to enable the radar signals to work:
I have also marked the same signals that are shown in post #61, namely a pair sent by the blue coordinator at his 1-year mark and received by the boxes at their 3-year marks to start their accelerations toward the coordinator and another pair sent by the blue coordinator at his 6.2-year mark and received by the boxes at their 7-year marks when their accelerations end and when they start their stopwatches (which we are not concerned with now) and when they echo signals back toward the coordinator and the other box. When those red and green signals pass through the half silvered mirror located with the coordinator, I show them as yellow as they progress to the other box.
Now I want to go through a little exercise to show how an observer can use radar signals and other observations to construct his own reference frame in which he is at rest. I will start with the blue coordinator because he is already at rest in the defining IRF and the process will be much more obvious. Here is a diagram showing the important blue radar signals that the coordinator sends out and the return reflections coming from the red and green boxes. The coordinator has to be sending out radar signals much more often than I am showing them but I have selected just a few that will make our process easier to perform:
For each radar signal that is sent, the observer keeps track of when it was sent according to the Proper Time on his own clock. After he receives the reflection, he keeps track of the received time and the observed Proper Time on the target. He keeps a log of these three numbers for each radar signal. Then he calculates a distance and a time for each set of numbers. These calculations use Einstein's convention that the radar signal takes the same amount of time to reach the target as it takes for the reflection to get back to the sender. The distance is merely the received time minus the sent time divided by two and then multiplied by the speed of light which in our example is 1. The time at which this distance applies is the average of the sent and received times. This will enable him to make a diagram showing his results as a function of his Proper Time. He is doing this separately for each object.
Let's go through one example at the bottom of the diagram. At his time of -6 years, the coordinator sends out a radar signal (in both directions but we can focus on just one). At his time of -2 years, he gets the reflection signal. He takes the difference, which is 4 and divides by 2 to to get a distance of 2 light-years. He knows that the distance is to the left for the red box and to the right for the green box. He averages -6 and -2 to get -4 as the time the box was 2 LY away. I hope this is clear. Now he just repeats this over and over again and from the calculations, he can draw a diagram just like the one we have been looking at. As he gets to the portions where the boxes are accelerating, his log of sent and received times will include times with fractional parts so we have to interpolate between the dots. Here is his final diagram:
Now we want to graduate to the red box who is going to make a diagram showing the position of the coordinator and the position of the green box as a function of his own Proper Time (marked off by the red dots). We start with the same original defining IRF and draw in the red radar signals sent by the red box and going to the blue coordinator. The reflections are shown in blue as they come back to the red box:
Next, we have a similar diagram showing the red radar signal going to green box and the green reflections coming back to the red box:
And here is the diagram that the red box constructs from all the radar signals and observations of the Proper Times of the other two objects:
I have drawn in the same signals that were in the first diagram in this post so that we can see that the signals arrive at the same times.
Trojan666ru said:
But somehow from the red box’ point of view, the green box receives the signal from the coordinator earlier than the red box. Why is it so?
It's because the red box is applying Einstein's convention that light travels at c in his rest frame.
Trojan666ru said:
Is that because the coordinator sends the green signal earlier and red later?
No, in all frames, the blue coordinator sends signals to both boxes at the same time.
Trojan666ru said:
Or
The distance between the coordinator and red box suddenly increased & the distance between the coordinator and green box decreased?
Not suddenly but gradually as you can see in the last diagram. But again, this is because the red box is applying Einstein's convention to his rest frame. It's not something that he can see or something that is intrinsic to nature. It's a man-made convention (the man being Einstein).
I said at the start that I didn't like my previous answer. I didn't realize at that time that the what you said about the two distances is true but now I realize that those two distances are different in the red box's rest frame. But, keep in mind that we could do this exercise all over again from the point of view of the green box and everything would be opposite. Then the red box would receive the signals from the coordinator earlier than the green box. It all has to do with Einstein's convention and the fact that the farther away an object is, the earlier you have to send a radar signal to it and the later you get its reflection compared to a closer object.
Well, I hope this helps. Keep asking if you have more questions. But please study this response in detail first.