cassienoelle said:
Okay so:
MEi = MEf
m1=8.7 hi=1.09 hf = 0
m2 = 3.9 hi = 0 hf = ?
KEi + PEi = KEf + PEf
1/2mv^2 + mgh = 1/2mv^2 + mgh
(1/2)(m??1 or 2??) V^2 + m?g0 = 1/2 m? 0 + mgh
Yeah you're on the right path. Just remember that you have two masses, so you need KE and PE for both masses, before and after (8 terms). If you want to write out the complete equation, it's like this:
(KE of m1 before) + (KE of m2 before) + (PE of m1 before) + (PE of m2 before) = (KE of m1 after) + (KE of m2 after) + (PE of m1 after) + (PE of m2 after)
(1/2)m1*v1i^2 + (1/2)m2*v2i^2 + m1*g*h1i + m2*g*h2i = (1/2)m1*v1f^2 + (1/2)m2*v2f^2 + m1*g*h1f + m2*g*h2f
And like you said, h2i = 0, h1f = 0, and you also have v1i = 0 and v2i = 0 (they both start from rest). Moreover, you know that both velocities are the same since they're connected by a string, so v1f = v2f = V (we'll call both final velocites V). Now your equation reduces to:
m1*g*h1i = (1/2)m1*V^2 + (1/2)m2*V^2 + m2*g*h2f
Now that's not so bad. The rest is algebra, solving for V.
Edit: That does it for part (a). For part (b), simply use the V you got from part (a) as an initial upward velocity against gravity (ignore the other mass and string and everything else).