Two rotating masses balanced by a third mass (rotational dynamics)

AI Thread Summary
The discussion focuses on analyzing a system of two rotating masses balanced by a third mass, emphasizing the conservation of angular momentum and the calculation of angular velocity. The initial angular velocity is derived using the equation ω₀ = √(Mg/(2mR₀)), assuming the system is balanced. The participants work through the equations for angular momentum and moment of inertia, ultimately deriving the relationship between angular velocities before and after changes in radius. They also clarify the correct signs in their equations related to forces acting on the masses. The final expression for the acceleration, incorporating corrections, is presented as a differential equation in terms of the variables involved.
Eirik
Messages
12
Reaction score
2
Homework Statement
Hi! This isn't really homework, but I'm practicing for my exam in mechanical physics and I'm really struggling with this one question!

Two masses, m, are rotating around the z axis as shown in the figure on a frictionless surface, but are being pulled down by a third mass, M. Find the differential equation for the movement of the system. The masses should be considered point masses and the system initially has ##R=R_0## and ##\omega=\omega_0## It should be on the following form, where ##\alpha## and ##\beta## are constants you need to find:
Relevant Equations
##\ddot R + \alpha g - \frac{\beta}{R^3}=0##, differential equation I need to find

##a_r = \ddot R -\omega^2R##, acceleration of mass m in the circle, given in task
Here's a diagram of what the system looks like:
Skjermbilde.PNG

So far I have figured out what the initial angular velocity is, if the system is balanced (no movement):

## \sum F_m = m*\frac{v^2}{R_0}-\frac{Mg}{2}=0 ##
##m \frac{v^2}{R_0}-\frac{Mg}{2}=0 ## divide both sides by m
##\omega_0 = \sqrt{\frac{Mg}{2mR_0}}##

One of the hints given for the task, was that we should consider the conservation of angular momentum:
Moment of inerty, start: ##I_0=2mR_0^2##
Angular momentum, start: ##L_0=I_0\omega_0=2mR_0^2 \sqrt{\frac{Mg}{2mR_0}} ##

I am struggling to find the equation for the angular momentum after that, however. I know that the moment of inertia should still be ##I=2mR^2##, and that ##L=I\omega##. How do I find \omega?

I also have this:
## \sum F_M = Mg-2S=M*\ddot R##
##S=m* (\ddot R -\omega^2R)## Really not sure if this one is correct

Any help would be very greatly appreciated!
 
Physics news on Phys.org
Eirik said:
Homework Statement::
So far I have figured out what the initial angular velocity is, if the system is balanced (no movement):
If the system were to start out in the balanced state, then it would remain in this state. I don't think they want you to assume the system is in the balanced state initially. I think they want you to express the differential equation for ##\ddot R## in terms of ##R_0## and ##\omega_0##.

One of the hints given for the task, was that we should consider the conservation of angular momentum:
Moment of inerty, start: ##I_0=2mR_0^2##
Angular momentum, start: ##L_0=I_0\omega_0=2mR_0^2 \sqrt{\frac{Mg}{2mR_0}} ##
Since the system does not necessarily start in the balanced state, you cannot assume that ##\omega_0=\sqrt{\frac{Mg}{2mR_0}} ##. Just express ##L_0## in terms of ##m##, ##R_0##, and ##\omega_0##.

I am struggling to find the equation for the angular momentum after that, however. I know that the moment of inertia should still be ##I=2mR^2##, and that ##L=I\omega##.
Yes.

How do I find ##\omega##?
You can use the expression for the angular momentum to find ##\omega## as a function of ##R##.

I also have this:
## \sum F_M = Mg-2S=M*\ddot R##
Be careful with signs. The left side expresses the net downward force on ##M##. So, the acceleration on the right should be the downward acceleration of ##M##. Does the downward acceleration of ##M## equal ##\ddot R## or ##-\ddot R##?

##S=m* (\ddot R -\omega^2R)##
You have a sign error in this equation. Does the force ##S## on ##m## act in the radially outward direction or the radially inward direction?
 
Thank you so much @TSny ! That was really, really helpful!

Then we have
##L_i=L##
##2mR_0^2\omega_0=2mR^2\omega##
Solving for ##\omega## gives us ##\omega=\frac{R_0^2\omega_0}{R^2}##

And if we choose the positive direction for the accelaration along -z, it should be ##S=m*(\omega^2R-\ddot R)## instead, as the direction for m's acceleration will be radially inward. If I now substitute ##\omega## in this expression, I get:

##S=m*((\frac{R_0^2\omega_0}{R^2})^2R-\ddot R) = m(\frac{R_0^4\omega_0^2}{R^3}-\ddot R)##

Substitution in ##Mg-2S=M\ddot R## gives us:

##Mg-2(m(\frac{R_0^4\omega_0^2}{R^3}-\ddot R))=M\ddot R##

And after doing some algebra I get:

##\ddot R - \frac{M}{M-2m}g + \frac{\frac{2mR_0^4\omega_0^2}{M-2m}}{R^3}=0##

Meaning that ##\alpha = \frac{M}{M-2m}## and ##\beta = \frac{2mR_0^4\omega_0^2}{M-2m}##

Yay!:biggrin: Does that look right?
 
Everything looks good up to here:
Eirik said:
Substitution in ##Mg - 2S = M \ddot R##
This equation has a sign error. Review the comments near the end of post #2. This will alter your final result. Otherwise, I think you have it.
 
@TSny Yes, of course! 🤦‍♂️ I thought ##\ddot R## would be M's downward acceleration, but R will get smaller over time, so it has to be ##Mg-2S=-M\ddot R##

That finally gives me

##\ddot R + \frac{M}{M+2m}g - \frac{\frac{2mR_0^4\omega_0^2}{M+2m}}{R^3}=0##

with ##\alpha = \frac{M}{M+2m}## and ##\beta = \frac{2mR_0^4\omega_0^2}{M+2m}##

That also checks out with the signs the task said I was supposed to end up with lol

Thank you again so, so much for all the help!
 
  • Like
Likes TSny
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top