Uncertainty principle, relating the uncertainty in position to the uncertainty

ttiger654
Messages
2
Reaction score
0
Prove the uncertainty principle, relating the uncertainty in position (A=x) to the uncertainty in energy (B=p^2/(2m + V)):

\sigma x\sigma H \geq \hbar/2m |<P>|

For stationary states this doesn't tell you much -- why not??
 
Physics news on Phys.org
What have you done so far? Do you know the generalized uncertainty relation? Read the guidelines to this forum, please, and we'll be able to help more.
 
ttiger654 said:
Prove the uncertainty principle, relating the uncertainty in position (A=x) to the uncertainty in energy (B=p^2/(2m + V)):

\sigma x\sigma H \geq \hbar/2m |<P>|

For stationary states this doesn't tell you much -- why not??



solution-
[x,p2/2m+V]=1/2m[x, p2]+[x,V];

[x, p2]= xp2 − p2x = xp2 − pxp + pxp − p2x = [x, p]p + p[x, p].

using the equation [x,p]=ih{this is known as canonocal commutation relation}

[x, p2]= ihp + pih = 2ihp. and And [x, V ] = 0,
so [x,p2/2m+ V]=1/2m(2ihp) = ihp/m

The generalized uncertainty principle says, in this case,

σ2xσ2H≥{(1/2i)(ih/m)<p>}^2={h/2m<p>}^2⇒ σxσH ≥h/2m|<p>|. QED

For stationary states σH = 0 and p = 0, so it just says 0 ≥ 0.
 
for reference u can use {griffiths_d.j._introduction_to_quantum_mechanics__2ed.}
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top