I Understanding Energy States in Complex Systems

AI Thread Summary
The discussion centers on understanding energy states in complex systems, particularly using the example of a pool as a heat reservoir interacting with a bottle of wine. The challenge lies in visualizing how many energy states correspond to a given energy level, similar to the clarity found in simpler models like the Einstein solid. The conversation highlights the difference between distinguishable and indistinguishable particles, noting that quantum statistics significantly reduce the number of states available. It also emphasizes that each molecule or atom in a system has multiple degrees of freedom, contributing to the total number of energy states. Ultimately, the complexity of these systems suggests that internal vibrations and other factors play a crucial role in energy state distribution.
Wledig
Messages
69
Reaction score
1
I'm having trouble picturing the energy states for some systems. For instance, I was reading Reif's Fundamentals of Statistical and Thermal Physics, and at some point he talks about the energy states of a pool acting as a heat reservoir interacting with a bottle of wine. The problem is that this is clear for me in something like an Einstein solid, how you can have many states associated to a certain energy but I can't see it how it is possible in this example. When Reif draws a bar graph and says that we could have for example 100 000 states for an energy of 1000 J it doesn't feel right. Maybe something like an Einstein solid is implicit here, and we're taking states to correspond to vibrations of the atoms of the pool?
 
Physics news on Phys.org
I don't have that book, but let me try to explain.
It might be a bit easier to understand a much simpler system, say only three particle, each one can have energy of 1,2,3,4,5,6 J (like dice).
If the particles are classical, there are the following states with the total energy of 7 J (using the notation (x,y,z) where x, y, z, are, respectively, energies of the first, second and third particle):
(1,1,5), (1,5,1), (5,1,1), (2,2,3), (2,3,2), (3,2,2), (1,3,3), (3,1,3), (3,3,1), (1,2,4), (1,4,2), (2,1,4), (2,4,1), (4,1,2), (4,2,1)
Therefore, we have 15 possible states of the three particle system and each of them gives us a total energy of 7 J.
This is the case when the particles are distinguishable. If these are idential quantum particles, they are not distinguishable. That means that the state with two particles of energy 1 J and the third with energy of 5 J is the same as the state with the first particle of energy 5 J and the remaining 2 of energy of 1 J ( you can't tell which is the first and which is the third particle!).
So, in quantum statistics, there are only the following states:
(1,1,5), (2,2,3), (1,3,3), (1,2,4), only 4 states.
 
  • Like
Likes Wledig
You see that's the thing, your example is also very nice and neat, I understand it perfectly. It's easy to picture the states in it, like for an Einstein solid or a spin system. It's the pool, the bottle of wine, or rather how we can generalize this for any system and say that there will be many states corresponding to a certain energy that's my problem. I'm guessing we're assuming that there will be internal vibrations in any system and therefore it'll function somewhat like an Einstein solid, allowing many states of energy, but it could be something more subtle than that. I just don't know.
 
Yes, pretty much, though it depends on state. Molecules/atoms can have a number of degrees of freedom within a system. For example, in a gas made up of diatomic molecules, each molecule will have six degrees of freedom:
  1. Three degrees of freedom from translational velocity of its centre of mass,
  2. Two degrees of freedom from rotational frequency about axes perpendicular to the molecule's primary axis,
  3. One degree of freedom from vibrations between the two atoms.
For something like a solid crystal, the only degrees of freedom would be translation and rotation of the whole, plus vibrational modes between atoms.

Each degree of freedom can accept certain quanta of energy; the number of states is the total number of ways you can assign these quanta to individual components.
 
  • Like
Likes Wledig
I see, thanks for confirming that.
 
So I know that electrons are fundamental, there's no 'material' that makes them up, it's like talking about a colour itself rather than a car or a flower. Now protons and neutrons and quarks and whatever other stuff is there fundamentally, I want someone to kind of teach me these, I have a lot of questions that books might not give the answer in the way I understand. Thanks
I am attempting to use a Raman TruScan with a 785 nm laser to read a material for identification purposes. The material causes too much fluorescence and doesn’t not produce a good signal. However another lab is able to produce a good signal consistently using the same Raman model and sample material. What would be the reason for the different results between instruments?
Back
Top