Understanding How Dampers and Springs Work in Car Suspension Systems

AI Thread Summary
The discussion focuses on the mechanics of car suspension systems, specifically the roles of dampers and springs. Dampers counteract motion, providing resistance that slows down oscillations, while springs store and release energy. The difference between forced and non-forced systems is highlighted, with forced systems experiencing external influences that can amplify motion, such as road disturbances. Calculating the frequency of springs is essential for understanding resonance, which can lead to increased motion amplitude under specific conditions. Overall, the equations of motion are crucial for identifying and mitigating resonance effects in suspension systems.
Spacexplorer
Messages
5
Reaction score
0
Hi guys. It could be an easy question but I started at the deepest. I wonder how it works like a car suspension system. How does damper work with spring? What is the difference between forced-nonforced systems? Why do we calculate frequency of spring? What does it provide us? What is the point at writing motion equation? I need backup a little bit. I already thank you.
 
Engineering news on Phys.org
Thanks DEvens. I just wanted to some nonacademical info because I've already reviewed lots of site as yours. I wanted to talk fundamental concept. I have books :) I will consider your words. I will focus on just one topic.
 
Spacexplorer said:
What is the difference between forced-nonforced systems?

That would be a free system where only the gravity acts on it:

Animated-mass-spring.gif
A forced system would have an exterior force that would push and/or pull the mass (perhaps someone's hand or road disturbances on a moving vehicle).

Spacexplorer said:
Why do we calculate frequency of spring? What does it provide us? What is the point at writing motion equation?

One fascinating thing about a forced system, is that if you set the force at a certain frequency (like pushing a kid on a swing), you can observe that the motion amplitude will increase under that force, sometime until the spring breaks. We call this frequency the resonance frequency of the system (not just the spring).

Why do we care? Here is the typical example to demonstrate what can happen under this phenomena (the bridge's own weight represents the mass, its structure represents the spring stiffness plus some damping and a small wind creating turbulences under and over the bridge at the critical frequency is the force «gently» pushing the bridge):



So now the questions are «Why?», «How do we identify this frequency?» and «How can we attenuate the phenomena?» The answer lies in the equations of motion, hence their importance.

Spacexplorer said:
How does damper work with spring?

The damper provides the force that goes against the motion and can thus attenuate the amplification and slows down the motion until the mass goes to rest (without damping, the motion never stops, like in the previous animation).

The damping is almost always provided by some form of friction to take energy from the system:
  • The surrounding air acting against the mass will eventually slow down the motion;
  • In the elastic hysteresis of rubber, energy will be dissipated due to material internal friction;
  • A shock absorber will force a fluid passing through a small valve;
  • etc.
 
Last edited:
Thank you very much for your comment. It was very illuminative knowledge for me.
P.S The video is the best :D
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Back
Top