[The following is for fun and to check my understanding. If inappropriate in any way, please delete.]
Joline and Tim are considering a circuit that consists of an inductor of inductance ##L## and a load resistor of resistance ##R##. Unlike an ideal inductor, the coils of the inductor in this circuit have a non-negligible total resistance ##R_C##. At time ##t = 0##, there is a current ##I_0## in the direction shown and the current is decreasing. They want to work out the current as a function of time.
The two are arguing about
which point ##a## or ##b## is “at the higher potential”. Joline claims ##a## must be at the higher potential to drive current through the load resistor ##R## in the given direction. Tim disagrees, saying that ##b## must be at the higher potential to push current through the resistance ##R_c## of the inductor in the given direction.
They decide to visit their professor to find out who is right. Professor
L. smiles and says, “You two have a conundrum because you both believe that ’potential at a point of this circuit' has meaning. It doesn’t. You don’t need to consider potential at all. Electric field is what pushes the charge carriers.
Just use Faraday’s law!” $$\oint \mathbf{E}\cdot \mathbf{ds} = -\frac{d \Phi}{dt}.$$
Joline and Tim agree to try this. For the closed path of the integral of the electric field, they choose a path that goes once around the circuit in the direction of the current and the path stays within the conducting material of the circuit. (So, the path through the inductor follows the corkscrew windings of the inductor.) They see that the rate of change of magnetic flux through this path of integration can be expressed as ##\large \frac{d \Phi}{dt} = L\frac{dI}{dt}##. Assuming that the hookup wire connecting the inductor to the load resistor has negligible resistance, they write Faraday’s law as $$\oint \mathbf{E} \cdot \mathbf{dl} = \left(\int \mathbf{E}\cdot \mathbf{ds}\right)_{\rm through \, load}+\left(\int \mathbf{E}\cdot \mathbf{ds}\right)_{\rm through \, inductor} = -L\frac{dI}{dt}.$$ From Ohm’s law, the integrals through the load and the inductor can be written as ##IR## and ##IR_C##, respectively. Making these substitutions and rearranging, Joline and Tim agree that the differential equation that determines the current as a function of time is $$\frac {dI}{dt} = -\frac{R + R_C}{L} I.$$ From this they derive easily the current as a function of time.