Understanding Integrals: Solving for dt in \frac{dr}{\sqrt{2\frac{GM}{r}+ 2C}

  • Thread starter Thread starter PMP
  • Start date Start date
  • Tags Tags
    Integrals
PMP
What is the integral of:

dt= \frac{dr}{\sqrt{2\frac{GM}{r}+ 2C}}​

where C is a constant?

I need to integrate this, but I don't know integrals so much. Thanks :rolleyes:
 
Physics news on Phys.org
For simplicity, reduce your questions to general ones with as few constants as possible. (you can plug in whatever the specific constants are later). Are you asking how to compute:

\int \frac{dx}{\sqrt{1+a/x}}?

If so, try the substitution u=\sqrt{1+a/x}[/tex].
 
Yes, I am asking that integral. Thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top