Tulio Cesar said:
1) I understood how variations in the amplitude of modulating signals are represented in the carrier wave, but I didn't get how frequency variations of the modulating signal are represented, as both AM and FM modulations seem do not care about it. Ex: How to distinguish a high vocal range (high frequency) from a low vocal range (low frequency).
2) I didn't get the concept of bandwidth. Is the modulation bandwidth the same of computing bandwidth? And how the frequency of a carrier wave interfere the amount of information you can send for period of time? Why the higher frequency of a FM signal helps on increasing the quality of it in comparison with AM.
1) If you look at the output of a microphone on an oscilloscope, it is an electrical copy of the sound waves. The jagged, complex waveform we see contains many frequencies. When we amplitude modulate a carrier with it, we cause its amplitude to "slowly" increase and decrease in accordance with the instantaneous microphone output. So when we impress the jagged waveform on the carrier, we have placed all the sound frequencies on to it. Whereas the carrier might be 1 MHz, the modulating frequencies might be only hundreds of Hertz.
At the receiver, we can obtain the original electrical waveform as from the microphone. If you look at a carrier modulated with a high pitched sound, the envelope has many peaks across the CRO screen, but if we use a low pitched sound, the envelope has only a few peaks across the screen.
2) Bandwidth. We are talking here about using analogue signals; the term is not accurate in its popular usage for digital signals ("broadband" etc). For transmitting a 1 kHz analogue tone using AM, we require 2 kHz of radio spectrum. The carrier frequency does not make any difference provided it is itself higher than 2 kHz, so is not usually an issue. For FM, because the carrier frequency is swept up and down in accordance with the instantaneous voltage from the microphone, much more radio spectrum is needed. For this reason, to find sufficient spectrum for broadcasting in FM, the service was forced to start up using much higher carrier frequencies than previously, an expensive business. The higher quality from FM comes from the use of very high carrier frequencies, so there is spectrum available for the large bandwidth required by the transmission of high audio frequencies, and from its noise suppressing characteristic. Roughly speaking, FM will ignore AM interference such as from car ignition. So far as I know, FM is the only way in which hi fidelity broadcasting takes place, and is capable of near perfection (BBC Radio 3 in the UK for instance).