Understanding Torque Consumption in a Multi-Pulley System

AI Thread Summary
Torque consumption in a multi-pulley system is determined by the reduction ratio of the pulleys and the conservation of power principle. In a three-shaft system, the torque remains constant across shafts if there are no losses, with the angular speed varying according to the pulley sizes. The torque at each shaft can be calculated using the formula for power, which is torque multiplied by angular speed. The intermediate shaft does not consume torque but transmits it, while the final shaft's torque is influenced by the input torque and the ratios of the pulleys. Understanding these relationships clarifies how torque is distributed throughout the system.
billinr
Messages
14
Reaction score
0
I would like to ask if anyone could explain how torque is consumed through a reduction ratio - in this case pulleys on a common shaft.

I have a three shaft system, joined by belts.
The motor pulley is 25.4mm, turning at 100 rpm, with an available 1.4Nm torque. This is connected to the second shaft via belt. The second shaft has an input pulley of 82.5mm.

Also on the second shaft is another pulley of 24.5mm. This pulley is connected via belt to a third shaft with a 40.6mm pulley.

My question is: If the final pulley makes use of 100% of the torque available, how would I calculate how much of the torque is used at the jack shaft? If I negate any losses from bearings, does the ratio have any effect on the torque or is the intermediate shaft just going along for the ride?

On the other side, does the ratio change the torque that is available at the third shaft?

Thanks
 
Physics news on Phys.org
From the belt ratios you should be able to find the angular speed at each shaft in rpm. If the belts don't slip, there is no loss of speed. If you neglect friction in the system, there is no loss of torque in the driveline. Convert shaft speeds to radian per second. The power at every shaft, computed as torque times speed (in watts), would then be constant due to conservation of power at each instant of time. Since you know the input power, you can find torque at each shaft from the power and radian shaft speed.

Edit: torque input equals torque output on the jack shaft when power is conserved, but force obviously differs in each belt operating at a different radius.
 
Last edited:
SystemTheory
Thank you for the reply. This is making a bit more sense.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
Back
Top