Understanding Weak Convergence in Little l1 and Little l∞ Spaces

  • Thread starter Thread starter homology
  • Start date Start date
  • Tags Tags
    Convergence Weak
homology
Messages
305
Reaction score
1
hello folks,

I've got a question about weak convergence. I'm sure I'm missing something but can't see what it is (<--standard "I'm dumb apology")

The problem concerns little l 1 and little l infinity (which is dual to little l 1) To make notation easier I'm going to denote these spaces by L1 and Linf.

If a sequence in L1 weakly converges then it strongly converges.

So we take a sequence in L1 {x_n} where each x_n is a inf-tuple (a_1,...) of real numbers such that Sum|a_k| is bounded. Take an element of Linf, call it g. We given that limg(x_n)=g(x) for an x in L1. Now we need to show that limx_n=x.

So my dilemma is that I essentially keep proving that strong convergence implies weak convergence. I keep trying to work expressions like |g(x_m)-g(x_n)|<e and |g(x)-g(x_n)|<e into the analogs for the x_n (using of course the appropriate norm).

As per usual i can't get my inequalities going in the right direction. I need only a tiny push, I'm sure. So advise sparingly.

As always, your help is much appreciated,

Kevin
 
Physics news on Phys.org
By Schur's lemma every weakly Cauchy sequence converges. So your answer lies in the proof of Schur's lemma.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
3
Views
3K
Replies
15
Views
2K
Replies
7
Views
2K
Replies
14
Views
2K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
16
Views
4K
Back
Top