Use comparison theorem to show if integral is convergent or divergent

zero13428
Messages
7
Reaction score
0

Homework Statement



int (e^-x)/(x)dx from 0 to infinity

Determine if integral is convergent or divergent2. The attempt at a solution
I assume because the bottom limit is 0 and there is an x in the bottom of the integral that this is going to be divergent but I still have to use the comparison theorem. I'm trying to find a function less then (e^-x)/(x) that also diverges to show that (e^-x)/(x) will diverge but I'm drawing a blank. I've tried messing around with 1/x^2 or just e^-x but both of those are still larger then the original (e^-x)/(x). Any suggestions?
 
Physics news on Phys.org
1/x is an interesting function in that it diverges both ways, the integral from 0 to 1 of 1/x is divergent, as is the integral from 1 to infinity (compare this to x^{1/2} and \frac{1}{x^2}). So when trying to do comparison with a 1/x term, it often helps to break up the integral into one from 0 to 1 and one from 1 to infinity, and see on each of those whether it converges or diverges
 
Ok, so if I can break the function into two parts, as long as one part (in this case 1/x) converges or diverges then the entire function does?

I thought I could only do these type of integrals by picking a function that was larger or smaller and then comparing.
 
Since this is an improper integral at both limits of integration, that's why you should consider the two intervals (0, 1] and [1, ∞) separately. Try finding whether the integral from (0, 1] converges first.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
2
Views
2K
Replies
3
Views
7K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Back
Top