Using 3 Vectors to Show Vector Multiplication is Not Commutative

amy098yay
Messages
23
Reaction score
0

Homework Statement


That is, use three specific vectors in 3-space to show that https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-a.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117×(https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-b.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117 × https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-c.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117) is not equal to (https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-a.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117 × https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-b.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117) × https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-c.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117.

The Attempt at a Solution


the solution is in the pdf file, did i make a mistake in answering the question..?
 

Attachments

Physics news on Phys.org
..
 
amy098yay said:

Homework Statement


That is, use three specific vectors in 3-space to show that https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-a.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117×(https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-b.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117 × https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-c.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117) is not equal to (https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-a.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117 × https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-b.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117) × https://ucdsb.elearningontario.ca/content/enforced/4850117-BL_1415Sem2__MAT_MCV4UU-948314_1_ELO/MCV4UPU01/MCV4UPU01A06/images/vec-c.gif?_&d2lSessionVal=Y3hirJUTSYjH76OEZwqHIBATE&ou=4850117.

The Attempt at a Solution


the solution is in the pdf file, did i make a mistake in answering the question..?
It's hard to follow your work, so I didn't check it. For the first triple product, please show us how you did b X c, and then a X (b X c). For the second triple product, please show is a X b, and then (a X b) X c.

As a self-check for your work, you should verify that when you calculate a X b, for example, the vector you get is perpendicular to both a and b. This can be done very quickly using the dot product - the dot product of perpendicular vectors is 0.
 
another pdf file of the solution
 

Attachments

amy098yay said:
another pdf file of the solution

axb and bxc are ok. I have no idea what you are doing when you try to find (axb)xc and ax(bxc).
 
This is the same sort of problem you're having in the other thread, https://www.physicsforums.com/threads/vectors-need-help.800394/.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top