Using approximations to the binomial distribution

bonfire09
Messages
247
Reaction score
0

Homework Statement


This is the problem I am given.
pic1.jpg
. It is in he picture below or in the thumbnail. I was also told that since ##n## is big enough that I can use normal approximations.

Homework Equations

The Attempt at a Solution


I think that ##C_{\alpha}=C_{0.1}=2.33## which I got off the Z-score chart. The test statistic given looks like the one given for a binomial distribution given by where ##Z=\dfrac{x-np}{\sqrt{npq}}=\dfrac{\frac{x}{n}-p}{\frac{\sqrt{pq}}{\sqrt{n}}}##. I am not sure if this right or not. But it seems like this is the only way of finding the critical value. Thanks[/B]
 
Last edited:
Physics news on Phys.org
I think you looked up the value for alpha = .01, you were asked for .1. If you are using a normal approximation, then this is all you need to find the critical value. Be sure to clarify if this is a one-tailed or two-tailed test. From the question T>C_alpha indicates you are checking to see if a majority are in favor--i.e. one-tailed, your process is correct. If you were just checking whether or not the null hypothesis held, you would use a two-tailed test. In that case, you would need to divide alpha by two.
 
I see it is two tailed so I would use ##C=1.645## which would be my critical value.
 
Right--In this case the two tailed test is for p = 50%, if you reject that, then you know it is either more or less. If you were only concerned with the proportion being more, then you could use a smaller critical value to get the same level of confidence.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top