Using Gauss' Law on a Solid Annular Sphere

deathsink
Messages
2
Reaction score
0

Homework Statement



Imagine a solid, annular sphere. At the center of the hollow is a point charge +Q. The inner radius of the sphere is r0, and the outer radius is R. Assume the charge density p = p0/r (for r0 < r < R). Calculate using the integral form of Gauss's Law the electric field in all three regions:

0< r < r0
r0< r < R
R < r < infinity

Homework Equations



[PLAIN]http://www.forkosh.dreamhost.com/mimetex.cgi?%5Coint_S%5Cmathbf%7BE%7D%5Ccdot%7Bd%7D%5Cmathbf%7BA%7D=%5Cfrac%7BQ%7D%7B%5Cepsilon_0%7D=%5Cfrac%7B1%7D%7B%5Cepsilon_0%7D%5Cint_V%5Crho(%5Cmathbf%7Br%7D)%5C,dV

The Attempt at a Solution



for 0 < r < r0

E(4 Pi r^2) = 1/e0 (p0/r)(4/3 pi r^3)
=> E = (1/3e0)p0

But this can't be right for because all of the r's cancel out. And since I can't do this one, I know I can't do the rest.

Thank you.
 
Last edited by a moderator:
Physics news on Phys.org
For this first interval, where 0 < r < r0, the enclosed charge is just +Q, the charge at the center of the hollow.
 
gneill said:
For this first interval, where 0 < r < r0, the enclosed charge is just +Q, the charge at the center of the hollow.

When you take the surface integral of E*dA, do you get E*(area of sphere) which you then need to divide through by?

I have not had Vector Calculus, so a lot of the notation is odd to me.

Edit: I got E=\frac{Q}{4\pi \epsilon _0r_0{}^2} by dividing through by the area of a sphere.
 
Last edited:
Your E dot DA in the surface integral turns into E da, because the field is radially directed and so the dot product is just the product of the magnitudes of the vectors E and dA (which is normal to the surface over which you're integrating).

So, at radius r you end up with

E(4 π r2) = Q/ε0

Or, rearranged,

E = Q/(4 π ε0 r2)

Which should look familiar.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top