V/I: Power from Potential Difference & Current

AI Thread Summary
The discussion centers around the equations related to power, potential difference, and current, specifically the formula P=VI. Initial confusion arose regarding the algebraic manipulation of the equations, particularly in deriving power from potential difference and current. Participants emphasized the importance of checking dimensions and using Ohm's law for clarity. The original poster acknowledged their mistake in algebra and confirmed that the correct formula for power is indeed P=VI. Overall, the conversation highlights the significance of accurate calculations and understanding fundamental electrical concepts.
kara123
Messages
21
Reaction score
4
Homework Statement
(a) Derive an expression for power in terms of potential difference and current.
(b) Use the result from part (a) and Ohm’s law to derive an expression for power in terms of current and resistance.
Relevant Equations
p= E/T
V=E/Q
I=Q/T
e=QxV
t=Q/I
p=(QxV)/(Q/I)
=V/I
The expression I came up with for a) is the potential difference divided by current to get power but I have no idea if that is even right if someone could just prompt me in the right direction that would be greatly appreciated
 
Physics news on Phys.org
What is "e"? You mean" E"? And the algebra is incorrect in final step. But I like your approach.
 
yes i ment E
 
Hi,
Whatever you do, check the dimensions. Do you know how to do that ?
Basically your relevant equations:
[power] = [energy] per [time]
##\ \ ##[voltage] = [energy] per [charge]
[current] = [charge] per [time]​

For part b) you also need Ohm's law as a relevant equation :wink: !

##\ ##
 
Check your algebra.
(QxV)/(Q/I) ≠ V/I
 
thankyou all for the help figured it out I must have been really tired while doing that algebra because I'm not sure what I was thinking the answer is P=VI
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top