josecuervo
- 17
- 0
Homework Statement
use the variational method to approximate the ground state energy of the particle in a one-dimentional box using the normalized trial wavefunction ∅(x)=Nx^{k}(a-x)^{k} where k is the parameter. Demonstrate why we choose the positive number rather than the negative value. By what absolute percentage does your value differ from the true one, (.125h^{2}/m_{e}a^2? It is also stated that
\ointpsi*Hpsi dx=(\bar{h}/m_{e}a^{2})(4k^{2}+k)/(2k-1).
Homework Equations
I'm pretty sure you have to use this one \ointpsi*Hpsi dx/\ointpsi*psi dx
The Attempt at a Solution
The first thing I tried to do is normalize the trial wavefunction which didn't get very far as I couldn't figure out how to do the integral. I also can't figure out to get either of the integrals to work because of the k powers. That is the main thing I'm blocked on. The only other thing I can think of is just to take an approximation of just the first two k values but the given integral with the incorporated hamiltonian has k included so it's wanting me to approx over all k. I need help getting to the next step. Thanks!