Varying current inducing E-field: example 7.9 in Griffiths

Nikitin
Messages
734
Reaction score
27

Homework Statement


Look at the attached file.

1) Why does Griffith simply say that the E-field of the amperian loop is parallel to the axis of the wire?

2) And how come ##\int \vec{E} \cdot d \vec{l} = -E(s) l ## ? Shouldn't it at least be ## E(s) 2l## ? Why the minus sign and ##l## instead of ##2l## ?
 

Attachments

  • 10593010_10204039731890255_8730071736579981749_n.jpg
    10593010_10204039731890255_8730071736579981749_n.jpg
    39.8 KB · Views: 637
Physics news on Phys.org
Homework forum has a template. It's compulsory.
1) Lenz's law. Nature wants to counteract.
Or Maxwell: if B is perp to the paper (call that the z direction, x to the right along the axis) ##(\nabla \times \vec E)_z = {\partial E_y\over \partial x} - {\partial E_x\over \partial y} = -({\partial \vec B\over \partial t})_z##
Now Ey can't depend on x (symmetry), so E = Ex only.
2) dl points in a different direction for the two s. In your unsharp picture I think I distinguish a little arrow on the lower dashed line ?
 
  • Like
Likes Nikitin
I used the template as far as possible,, all I need to know is how griffiths justified that E-field stuff.

1) Fair enough.

2) Yes, you are right about the arrow. And sorry about the resolution (can you read everything?). dl points to the right there, so the path integral is taken counter-clockwise. But how does this make the E-field integral equal to - E(s)*l ?
 
Last edited:
On the path integral ##\int_{path} \vec E dl = \int _{s_0}^s \vec E(s') ds' +\int _{l}^0 \vec E(s) dl'+\int _s^{s_0} \vec E(s') ds' +\int _{0}^l \vec E(s_0) dl'##
The pieces ##\int _{l}^0 \vec E(s) dl'+\int _{0}^l \vec E(s_0) dl'=\vec E(s_0)l-\vec E(s)l##,
The pieces ##\int _{s_0}^s \vec E(s') ds'+\int _s^{s_0} \vec E(s') ds'=0## since the field in invariant in x.
 
  • Like
Likes Nikitin
ahh, right. now I see my mistakes! thank you :)

And thanks to BvU too!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top