- #1
IonizingJai
- 14
- 0
Question: At what angles must be the two forces ##\vec A+\vec B## and ##\vec A-\vec B## act so that the resultant may be :
$$\sqrt{ A^2+B^2}$$
Attempt at solution :
Let the given forces be ##\vec F_1=\vec A+\vec B## and ##\vec F_2=\vec A-\vec B## .
Now, Resultant vector : ##\vec F_1 + \vec F_2 = (\vec A+\vec B) + (\vec A-\vec B) ## .
Magnitude of Resultant: ##|\vec F_1 + \vec F_2| = \sqrt{(A+B)^2+(A-B)^2+2(A+B)(A-B)\cos(\theta)}##.
Here, ##\theta## being the angle between ##\vec F_1 and \vec F_2## .
Stuck here ##=\sqrt{2(A^2+B^2)+2(A^2-B^2)\cos(\theta)}## . [ I'm noob with LaTeX too.].
$$\sqrt{ A^2+B^2}$$
Attempt at solution :
Let the given forces be ##\vec F_1=\vec A+\vec B## and ##\vec F_2=\vec A-\vec B## .
Now, Resultant vector : ##\vec F_1 + \vec F_2 = (\vec A+\vec B) + (\vec A-\vec B) ## .
Magnitude of Resultant: ##|\vec F_1 + \vec F_2| = \sqrt{(A+B)^2+(A-B)^2+2(A+B)(A-B)\cos(\theta)}##.
Here, ##\theta## being the angle between ##\vec F_1 and \vec F_2## .
Stuck here ##=\sqrt{2(A^2+B^2)+2(A^2-B^2)\cos(\theta)}## . [ I'm noob with LaTeX too.].