Vectorial kinematic in cartesian and polar system/notanion

AI Thread Summary
The discussion centers on the complexities of vectorial kinematics, specifically the relationships between various vectors such as position, displacement, velocity, and acceleration in both Cartesian and polar systems. The original poster expresses difficulty in finding clear explanations and seeks clarification on the mathematical derivations involving angular velocity and acceleration. Confusion arises regarding the equality of two different expressions for the time derivative of a vector, leading to questions about the correct formulation of acceleration in a rotating frame. Participants provide insights and references, including Wikipedia links, but the poster remains uncertain about the discrepancies in the derivations presented. Ultimately, the conversation highlights the challenges of understanding vectorial kinematics and the need for precise mathematical definitions.
Jhenrique
Messages
676
Reaction score
4
I was trying to study vectorial kinematics in all its fullness, without decorating formulas, only deducting all vectorially through mathematical definitions. I felt much difficulty, because it's a puzzle of many pieces and I not found a embracing explanation in any book. Someone could explain to me how the concepts of position vector, displacement vector, velocity vector, angular velocity vector, radial velocity vector, acceleration vector, angular acceleration vector and radial acceleration vector are connected geometrically and algebraically? Or, at least, could indicate me to some book that discusses these questions with clarity?
 
Science news on Phys.org
I found 2 excelents explanations!
http://en.wikipedia.org/wiki/Equations_of_motion#General_planar_motion
http://en.wikipedia.org/wiki/Centripetal_force#General_planar_motion
http://en.wikipedia.org/wiki/Vector...ates#Second_time_derivative_of_a_vector_field

However, still remained one doubt, in this topic (http://en.wikipedia.org/wiki/Centrifugal_force_(fictitious)#Acceleration) there is the follow deduction:

fd210a5722c5cfbd937aa2451527531d.png



But I don't understood how
\frac{\mathrm{d} }{\mathrm{d} t}\left (\vec{\omega } \times \vec{r} \right )
can be equal to
\frac{\mathrm{d} \vec{\omega }}{\mathrm{d} t}\times \vec{r}+2\vec{\omega }\times\left [ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]+ \vec{\omega } \times (\vec{\omega }\times \vec{r})
How? Why?
 
Jhenrique said:
I found 2 excelents explanations!
http://en.wikipedia.org/wiki/Equations_of_motion#General_planar_motion
http://en.wikipedia.org/wiki/Centripetal_force#General_planar_motion
http://en.wikipedia.org/wiki/Vector...ates#Second_time_derivative_of_a_vector_field

However, still remained one doubt, in this topic (http://en.wikipedia.org/wiki/Centrifugal_force_(fictitious)#Acceleration) there is the follow deduction:

fd210a5722c5cfbd937aa2451527531d.png



But I don't understood how
\frac{\mathrm{d} }{\mathrm{d} t}\left (\vec{\omega } \times \vec{r} \right )
can be equal to
\frac{\mathrm{d} \vec{\omega }}{\mathrm{d} t}\times \vec{r}+2\vec{\omega }\times\left [ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]+ \vec{\omega } \times (\vec{\omega }\times \vec{r})
How? Why?

$$

\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) \right] + \vec{\omega } \times \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] \right]

+ \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \vec{\omega } \times \vec{r} \right) \right]

+ \vec{\omega } \times \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} ^2 \vec r }{\mathrm{d}^2 t} \right]

+ \left[ \frac{\mathrm{d} \vec \omega }{\mathrm{d} t} \right] \times \vec{r}

+ \vec \omega \times \left[ \frac{\mathrm{d} \vec r}{\mathrm{d} t}\right]

+ \vec{\omega } \times \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} ^2 \vec r }{\mathrm{d}^2 t} \right]

+ \frac{\mathrm{d} \vec \omega }{\mathrm{d} t} \times \vec{r}

+ 2 \vec \omega \times \left[ \frac{\mathrm{d} \vec r}{\mathrm{d} t}\right]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

$$
 
voko said:
$$

\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) \right] + \vec{\omega } \times \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

$$

What? Why plus ω×([dr/dt] + ω×r)?

My equation results a different result:
\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) = \left[ \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d} t^2} \right ] + \frac{\mathrm{d} }{\mathrm{d} t} \left(\vec{\omega } \times \vec{r} \right) = \left[ \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d} t^2} \right ] + \frac{\mathrm{d} \vec{\omega}}{\mathrm{d} t} \times \vec{r}+\vec{\omega} \times \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} = [\vec{a}] + \vec{\alpha }\times \vec{r}+\vec{\omega}\times\vec{v}
 
Because for any vector ##\vec x##, $$ {\mathrm{d} \vec x \over \mathrm{d} t} = \left[ {\mathrm{d} \vec x \over \mathrm{d} t} \right] + \vec \omega \times \vec x , $$ where the square brackets denote differentiation in the co-rotating frame.

In this case we have $$ \vec x= \vec v = {\mathrm{d} \vec r \over \mathrm{d} t} = \left[ {\mathrm{d} \vec r \over \mathrm{d} t} \right] + \vec \omega \times \vec r , $$ so that formula is applied twice.
 
voko said:
Because for any vector ##\vec x##, $$ {\mathrm{d} \vec x \over \mathrm{d} t} = \left[ {\mathrm{d} \vec x \over \mathrm{d} t} \right] + \vec \omega \times \vec x , $$ where the square brackets denote differentiation in the co-rotating frame.

In this case we have $$ \vec x= \vec v = {\mathrm{d} \vec r \over \mathrm{d} t} = \left[ {\mathrm{d} \vec r \over \mathrm{d} t} \right] + \vec \omega \times \vec r , $$ so that formula is applied twice.

Now I understood! So, which is correct expression to d²r/dt² ? Is a + α×r + ω×v or a + α×r + 2ω×v + ω×(ω×r) ? My equation in post #4 is incorrect/incomplete?
 
The correct formula is given in #3. It is identical to the one in Wikipedia.
 
  • Like
Likes 1 person
You asked for a general derivation using vectors. It was given to you. Is there something you do not understand about the derivation?
 
  • #10
voko said:
You asked for a general derivation using vectors. It was given to you. Is there something you do not understand about the derivation?

In actually, yes! Because the 2 derivations below seems be correct...
voko said:
$$

\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) \right] + \vec{\omega } \times \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] \right]

+ \left[ \frac{\mathrm{d} }{\mathrm{d} t} \left( \vec{\omega } \times \vec{r} \right) \right]

+ \vec{\omega } \times \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} ^2 \vec r }{\mathrm{d}^2 t} \right]

+ \left[ \frac{\mathrm{d} \vec \omega }{\mathrm{d} t} \right] \times \vec{r}

+ \vec \omega \times \left[ \frac{\mathrm{d} \vec r}{\mathrm{d} t}\right]

+ \vec{\omega } \times \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

\\

= \left[ \frac{\mathrm{d} ^2 \vec r }{\mathrm{d}^2 t} \right]

+ \frac{\mathrm{d} \vec \omega }{\mathrm{d} t} \times \vec{r}

+ 2 \vec \omega \times \left[ \frac{\mathrm{d} \vec r}{\mathrm{d} t}\right]

+ \vec{\omega } \times \left( \vec{\omega } \times \vec{r} \right)

$$

Jhenrique said:
\frac{\mathrm{d} }{\mathrm{d} t} \left( \left[ \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} \right ] + \vec{\omega } \times \vec{r} \right) = \left[ \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d} t^2} \right ] + \frac{\mathrm{d} }{\mathrm{d} t} \left(\vec{\omega } \times \vec{r} \right) = \left[ \frac{\mathrm{d}^2 \vec{r}}{\mathrm{d} t^2} \right ] + \frac{\mathrm{d} \vec{\omega}}{\mathrm{d} t} \times \vec{r}+\vec{\omega} \times \frac{\mathrm{d} \vec{r}}{\mathrm{d} t} = [\vec{a}] + \vec{\alpha }\times \vec{r}+\vec{\omega}\times\vec{v}

I know that your answer is correct, but I don't know why mine isn't. I followed the sum rule and the product rule correctly, not should have two different results for same equation.
 
  • #11
In your derivation, you assumed that $$ \mathrm d \over \mathrm d t $$ and $$ \left[ \mathrm d \over \mathrm d t \right] $$ are the same thing. They are not, as shown in #5.
 

Similar threads

Replies
7
Views
5K
Replies
7
Views
3K
Replies
46
Views
9K
Replies
7
Views
2K
Back
Top