Velocity and Loss in Energy onedimensional

AI Thread Summary
A 15kg object dropped from a height of 11.58m experiences a loss of energy of 320 J, leading to a calculation of its velocity upon entering a container. The gravitational potential energy (GPE) is calculated as 1702.26 J, and after accounting for the energy loss, the remaining energy is 1382.26 J. This energy is then equated to kinetic energy (KE) to find the velocity, resulting in a value of approximately 13.57 m/s. There is confusion regarding the energy loss, which is suggested to be due to friction, as the object should ideally convert potential energy to kinetic energy without loss. The discussion highlights the importance of understanding energy transformations in physics problems.
Nuingaer
Messages
1
Reaction score
0

Homework Statement


If a 15kg object is released from a height of 11.58m and the objects loss in energy is 302 J, determine its velocity as it enters the container (object is being dropped straight down into a container)
Assume g = 9.8m/s^2
m(object) = 15kg = w(object) = 147N
s = 11.58m
ΔE = -320 J

Homework Equations


Had no idea. But the ones i know that i thought could apply:
ΔKE = KE(final) - KE(initial)
KE = 1/2 * mv^2
GPE = mgh
v^2 = u^2 + 2as

The Attempt at a Solution


Okay, I had no idea how to do this, but i tried to work out as many things as i can then mash em together to get an answer :p

GPE = mgh
=15*9.8*11.58
=1702.26

Then i thought; well if the loss in energy is 320 J then i could take that from the original GPE
1702.26 - 320 = 1382.26 J

and now i could work out the new height by subbing it back in
1382.26 = 15*9.8*h
h=9.403m

And here is where it gets iffy... they say the velocity when it enters the container, but the container isn't at 9.403m its at 0...right? that's what i got from the question anyway. Therefore how did they only lose 320N? So I assumed that I could say its KINETIC energy is the 1382.26 J, and the height of the container is the difference because they say when it "enters".
Therefore..
KE = 1/2 * m * v^2
1382.26 = 1/2 * 15 * v^2
2764.52 = 15 * v^2
v^2 = 184.30
v = 13.58 m/s

We don't have the answer to this question yet, but *a lot* of other people got 13.66m/s as the answer... so since i had no idea how to do this question and no basis to support whether I am right or not, could someone help me out and either point out where i went wrong or if I'm right? thank you!
 
Last edited:
Physics news on Phys.org
I think they mean by lose of energy that it's due to friction, because when dropping an object from a certain hight the object does't lose energy but the energy is converted from potential to kinetic, and so when the question states that there there was loss in energy i think its due to friction(i might be wrong i don't know). If this is the case then i think you should do this:
Energy (at h=11.58 )-Energy lost=1702.26-320=1382.26
Ek=1/2*mv^2
v=13.57m/s
in this case you take the barrol at hight 0.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top