Velocity in microchannel with temporal temperature variation

In summary, the problem involves a microchannel of length 2L and width h where a cyclic temperature profile leads to a time dependent density. The task is to find the exact solution of u, v, and p using the mass conservation equation and momentum balance equation. To solve this, the length scales are normalized and boundary conditions are set, resulting in a steady state flow problem. The equations are then transformed to variables in the frame of reference of an observer moving at a constant velocity, reducing the problem to a simpler form.
  • #36
big dream said:
Excellent. Now the only thing left to do is to determine the vertical velocity V. Any ideas?
 
Physics news on Phys.org
  • #37
we could use the continuity equation. But I don't know what to do with this
upload_2017-11-25_0-5-29.png
 

Attachments

  • upload_2017-11-25_0-5-29.png
    upload_2017-11-25_0-5-29.png
    1,021 bytes · Views: 722
  • #38
big dream said:
we could use the continuity equation. But I don't know what to do with this View attachment 215538
If you're asking how to differentiate this with respect to X, everything in the expression is constant except ##\rho (X)##
 
  • #39
After getting the expression of V what to do with ##\rho (x,t)##
 
  • #40
big dream said:
After getting the expression of V what to do with ##\rho (x,t)##
What do you get for V(X,Y)?
 
  • #41
$${\it mambiguous} \left( V =~\left(-\frac{3\cdot c \cdot Y ^{2}}{h }+
\frac{2\cdot c \cdot Y ^{3}}{h ^{2}}\right)\frac{\partial \rho \left(X
\right)}{\partial X }~\left[\left\{\frac{1-\frac{\rho \left(X \right)
}{\lambda }\int _{0}^{\lambda }{\it mambiguous} \left( \frac{\partial
\xi }{\rho \left(\xi \right)}, \right) }{\frac{\rho \left(X \right)}{
\lambda }\int _{0}^{\lambda }\frac{\partial \xi }{\rho \left(\xi
\right)}~}+c \right\}-\frac{1}{\lambda }\int _{0}^{\lambda }\frac{
\partial \xi }{\rho \left(\xi \right)}\left\{\frac{1}{\frac{\rho
\left(X \right)}{\lambda }\int _{0}^{\lambda }\frac{\partial \xi }{
\rho \left(\xi \right)}~}+\frac{1-\frac{\rho \left(X \right)}{\lambda
}\int _{0}^{\lambda }\frac{\partial \xi }{\rho \left(\xi \right)}~}{
\frac{\rho \left(X \right)\escirc 2}{\lambda }\int _{0}^{\lambda }
\frac{\partial \xi }{\rho \left(\xi \right)}~}~\right\}\right]
\right)$$
 

Attachments

  • upload_2017-11-25_17-30-0.png
    upload_2017-11-25_17-30-0.png
    4.7 KB · Views: 440
  • #42
big dream said:
$${\it mambiguous} \left( V =~\left(-\frac{3\cdot c \cdot Y ^{2}}{h }+
\frac{2\cdot c \cdot Y ^{3}}{h ^{2}}\right)\frac{\partial \rho \left(X
\right)}{\partial X }~\left[\left\{\frac{1-\frac{\rho \left(X \right)
}{\lambda }\int _{0}^{\lambda }{\it mambiguous} \left( \frac{\partial
\xi }{\rho \left(\xi \right)}, \right) }{\frac{\rho \left(X \right)}{
\lambda }\int _{0}^{\lambda }\frac{\partial \xi }{\rho \left(\xi
\right)}~}+c \right\}-\frac{1}{\lambda }\int _{0}^{\lambda }\frac{
\partial \xi }{\rho \left(\xi \right)}\left\{\frac{1}{\frac{\rho
\left(X \right)}{\lambda }\int _{0}^{\lambda }\frac{\partial \xi }{
\rho \left(\xi \right)}~}+\frac{1-\frac{\rho \left(X \right)}{\lambda
}\int _{0}^{\lambda }\frac{\partial \xi }{\rho \left(\xi \right)}~}{
\frac{\rho \left(X \right)\escirc 2}{\lambda }\int _{0}^{\lambda }
\frac{\partial \xi }{\rho \left(\xi \right)}~}~\right\}\right]
\right)$$
Yikes! That's nothing like what I get. Here is my development:

$$U(X,Y)\rho(X)=6c\left[\frac{1-\frac{\rho (X)}{\lambda}\int_0^{\lambda}{\frac{d\xi}{\rho(\xi)}}}{\frac{1}{\lambda}\int_0^{\lambda}{\frac{d\xi}{\rho(\xi)}}}\right]\left(\frac{Y}{h}-\left(\frac{Y}{h}\right)^2\right)+c\rho(X)$$So,
$$\frac{\partial (\rho U)}{\partial X}=\left(1-6\frac{Y}{h}+6\left(\frac{Y}{h}\right)^2\right)c\frac{d\rho(X)}{dX}$$
So, $$\frac{\partial (\rho V)}{\partial Y}=-\left(1-6\frac{Y}{h}+6\left(\frac{Y}{h}\right)^2\right)c\frac{d\rho(X)}{dX}$$
So, $$V=\left(-\frac{Y}{h}+3\left(\frac{Y}{h}\right)^2-2\left(\frac{Y}{h}\right)^3\right)\frac{ch}{\rho(X)}\frac{d\rho(X)}{dX}$$
 
  • Like
Likes big dream
  • #43
sir, Thank you very much for your help and patience. last doubt how to simplify the expression of u(x,t)? i.e. thread #35
 
  • #44
In post # 35, ##\rho(t, x)=\rho_0\left(1-\beta \Delta T \cos{}\frac{2\pi(x+ct)}{\lambda}\right)## and
$$\frac{1}{\lambda}\int_0^{\lambda}{\frac{d\xi}{\rho(\xi)}}=\frac{1}{\rho_0}\frac{1}{2\pi}\int_0^{2\pi}{\frac{d\theta}{(1-\beta \Delta T\cos{\theta})}}$$
 
  • Like
Likes big dream
  • #45
Chestermiller said:
Before doing anything else, I need you to prove to yourself that, if we make the following transformation of variables,

t = T
y = Y
x = X - ct
v = V(X,Y)
u = U(X,Y) - c
p = P(X)

our equations reduce to:
$$\rho=\rho(X)$$
$$\frac{\partial (\rho U)}{\partial X}+\frac{\partial (\rho V)}{\partial Y}=0\tag{1}$$
$$\frac{\partial P}{\partial X}=\mu \frac{\partial ^2U}{\partial Y^2}\tag{2}$$
subject to the boundary conditions ##U=c## and ##V=0## at ##Y=0,h##. These are equivalent to the equations that an observer who is traveling at a constant speed c in the negative x direction would write. This observer would conclude that, as reckoned from his frame of reference, the system is at steady state, with all parameters functions of X and Y only.
How could the system be in steady state when X=x+ct which is also related to time? If you have some time would you explain it?
 
  • #46
big dream said:
How could the system be in steady state when X=x+ct which is also related to time? If you have some time would you explain it?
It's at steady state as reckoned from the frame of reference of an observer who is moving to the left with a speed equal to c.
 
  • #47
Chestermiller said:
Before doing anything else, I need you to prove to yourself that, if we make the following transformation of variables,

t = T
y = Y
x = X - ct
v = V(X,Y)
u = U(X,Y) - c
p = P(X)

our equations reduce to:
$$\rho=\rho(X)$$
$$\frac{\partial (\rho U)}{\partial X}+\frac{\partial (\rho V)}{\partial Y}=0\tag{1}$$
$$\frac{\partial P}{\partial X}=\mu \frac{\partial ^2U}{\partial Y^2}\tag{2}$$
subject to the boundary conditions ##U=c## and ##V=0## at ##Y=0,h##. These are equivalent to the equations that an observer who is traveling at a constant speed c in the negative x direction would write. This observer would conclude that, as reckoned from his frame of reference, the system is at steady state, with all parameters functions of X and Y only.
Actually how you get continuity equation from this equation $$\frac{\partial \rho( U+c)}{\partial (X-ct)}+\frac{\partial (\rho V)}{\partial Y}=\frac{\partial \rho}{\partial T}$$
 
  • #48
big dream said:
Actually how you get continuity equation from this equation $$\frac{\partial \rho( U+c)}{\partial (X-ct)}+\frac{\partial (\rho V)}{\partial Y}=\frac{\partial \rho}{\partial T}$$
In post #11, I asked you to prove to yourself that, with the transformation of variables I indicated, the equations transform the way I say they do. In post #12, you indicated that you had successfully done this. Now you tell me that you had not done this (and don't know how to). How can I trust you?
 
  • #49
Chestermiller said:
In post #11, I asked you to prove to yourself that, with the transformation of variables I indicated, the equations transform the way I say they do. In post #12, you indicated that you had successfully done this. Now you tell me that you had not done this (and don't know how to). How can I trust you?
after using Galilean transformation I got,
$$\frac{\partial (\rho U)}{\partial X}+\frac{\partial (\rho V)}{\partial Y}=\frac{\partial \rho}{\partial T}$$
now as## \rho## becomes the function of X. so $$\frac{\partial \rho}{\partial T}$$ must be zero. but when I show it to the teacher he told that X =x+ct so it is also a function of t, differentiation w.r.t. T may not be zero.
He asked me to show mathematical evidence. How it becomes a steady state?
Sir, I thought maybe my perception of the transformation of the equation is wrong, or my explanation. Is there something wrong with my explanation?
 
  • #50
big dream said:
after using Galilean transformation I got,
$$\frac{\partial (\rho U)}{\partial X}+\frac{\partial (\rho V)}{\partial Y}=\frac{\partial \rho}{\partial T}$$
now as## \rho## becomes the function of X. so $$\frac{\partial \rho}{\partial T}$$ must be zero. but when I show it to the teacher he told that X =x+ct so it is also a function of t, differentiation w.r.t. T may not be zero.
He asked me to show mathematical evidence. How it becomes a steady state?
Sir, I thought maybe my perception of the transformation of the equation is wrong, or my explanation. Is there something wrong with my explanation?
You have not carried out the transformation correctly. The starting equations are $$T=t$$$$X=x+ct$$and $$Y=y$$
For any function f of position and time, we start out by writing:$$df=\left(\frac{\partial f}{\partial T}\right)_{X,Y}dT+\left(\frac{\partial f}{\partial X}\right)_{T,Y}dX+\left(\frac{\partial f}{\partial Y}\right)_{T,X}dY$$From this, it follows that:
$$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial t}\right)_{x,y}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial t}\right)_{x,y}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial t}\right)_{x,y}$$
But, in our problem, $$\left(\frac{\partial T}{\partial t}\right)_{x,y}=1$$$$\left(\frac{\partial X}{\partial t}\right)_{x,y}=c$$and $$\left(\frac{\partial Y}{\partial t}\right)_{x,y}=0$$
Therefore, $$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}+c\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$

Now it's your turn. What do you get for $$\left(\frac{\partial f}{\partial x}\right)_{t,y}$$and$$\left(\frac{\partial f}{\partial y}\right)_{t,x}$$
 
  • #51
Chestermiller said:
You have not carried out the transformation correctly. The starting equations are $$T=t$$$$X=x+ct$$and $$Y=y$$
For any function f of position and time, we start out by writing:$$df=\left(\frac{\partial f}{\partial T}\right)_{X,Y}dT+\left(\frac{\partial f}{\partial X}\right)_{T,Y}dX+\left(\frac{\partial f}{\partial Y}\right)_{T,X}dY$$From this, it follows that:
$$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial t}\right)_{x,y}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial t}\right)_{x,y}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial t}\right)_{x,y}$$
But, in our problem, $$\left(\frac{\partial T}{\partial t}\right)_{x,y}=1$$$$\left(\frac{\partial X}{\partial t}\right)_{x,y}=c$$and $$\left(\frac{\partial Y}{\partial t}\right)_{x,y}=0$$
Therefore, $$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}+c\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$

Now it's your turn. What do you get for $$\left(\frac{\partial f}{\partial x}\right)_{t,y}$$and$$\left(\frac{\partial f}{\partial y}\right)_{t,x}$$
$$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial x}\right)_{t,y}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial x}\right)_{t,y}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial x}\right)_{t,y}$$
$$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$
$$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial y}\right)_{t,x}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial y}\right)_{t,x}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial y}\right)_{t,x}$$
$$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial Y}\right)_{T,X}$$
 
  • #52
Chestermiller said:
You have not carried out the transformation correctly. The starting equations are $$T=t$$$$X=x+ct$$and $$Y=y$$
For any function f of position and time, we start out by writing:$$df=\left(\frac{\partial f}{\partial T}\right)_{X,Y}dT+\left(\frac{\partial f}{\partial X}\right)_{T,Y}dX+\left(\frac{\partial f}{\partial Y}\right)_{T,X}dY$$From this, it follows that:
$$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial t}\right)_{x,y}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial t}\right)_{x,y}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial t}\right)_{x,y}$$
But, in our problem, $$\left(\frac{\partial T}{\partial t}\right)_{x,y}=1$$$$\left(\frac{\partial X}{\partial t}\right)_{x,y}=c$$and $$\left(\frac{\partial Y}{\partial t}\right)_{x,y}=0$$
Therefore, $$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}+c\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$

Now it's your turn. What do you get for $$\left(\frac{\partial f}{\partial x}\right)_{t,y}$$and$$\left(\frac{\partial f}{\partial y}\right)_{t,x}$$
$$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial x}\right)_{t,y}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial x}\right)_{t,y}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial x}\right)_{t,y}$$
$$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$
$$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial y}\right)_{t,x}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial y}\right)_{t,x}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial y}\right)_{t,x}$$
$$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial Y}\right)_{T,X}$$
 
  • #53
big dream said:
$$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial x}\right)_{t,y}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial x}\right)_{t,y}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial x}\right)_{t,y}$$
$$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$
$$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial y}\right)_{t,x}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial y}\right)_{t,x}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial y}\right)_{t,x}$$
$$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial Y}\right)_{T,X}$$
OK. Now of we substitute ##\rho## for f in the equation $$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}+c\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$
what do we get?

And, if we substitute ##\rho V## for f in the equation $$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial Y}\right)_{T,X}$$
what do we get?

And, if we substitute ##\rho (U-c)## for f in the equation $$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$
what do we get?
 
  • #54
Chestermiller said:
OK. Now of we substitute ##\rho## for f in the equation $$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}+c\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$
what do we get?

And, if we substitute ##\rho V## for f in the equation $$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial Y}\right)_{T,X}$$
what do we get?

And, if we substitute ##\rho (U-c)## for f in the equation $$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$
what do we get?
$$\left(\frac{\partial (\rho U)}{\partial X}\right)_{T,Y}+\left(\frac{\partial (\rho V)}{\partial Y}\right)_{T,X}=\left(\frac{\partial \rho}{\partial T}\right)_{X,Y}+2c\left(\frac{\partial \rho}{\partial X}\right)_{T,Y}$$
 
  • #55
big dream said:
$$\left(\frac{\partial (\rho U)}{\partial X}\right)_{T,Y}+\left(\frac{\partial (\rho V)}{\partial Y}\right)_{T,X}=\left(\frac{\partial \rho}{\partial T}\right)_{X,Y}+2c\left(\frac{\partial \rho}{\partial X}\right)_{T,Y}$$
Wrong. You wrote down the original continuity equation incorrectly. And ##\rho## is not a function of T.
 
  • #56
Chestermiller said:
Wrong. You wrote down the original continuity equation incorrectly. And ##\rho## is not a function of T.
$$\frac{\partial (\rho U)}{\partial X}-c\frac{\partial (\rho)}{\partial X}+\frac{\partial (\rho V)}{\partial Y}=\frac{\partial \rho}{\partial T}+c\frac{\partial \rho}{\partial X}$$
so ##\rho## is not the function of T so
$$\frac{\partial (\rho)}{\partial T}=0$$
$$c\frac{\partial (\rho)}{\partial X}$$ should be canceled from both sides.
 
  • #57
big dream said:
$$\frac{\partial (\rho U)}{\partial X}-c\frac{\partial (\rho)}{\partial X}+\frac{\partial (\rho V)}{\partial Y}=\frac{\partial \rho}{\partial T}+c\frac{\partial \rho}{\partial X}$$
so ##\rho## is not the function of T so
$$\frac{\partial (\rho)}{\partial T}=0$$
$$c\frac{\partial (\rho)}{\partial X}$$ should be canceled from both sides.
The correct statement of the continuity equation is:
$$\frac{\partial \rho}{\partial t}+\frac{\partial (\rho u)}{\partial x}+\frac{\partial (\rho v)}{\partial y}=0$$
 
  • #58
Chestermiller said:
The correct statement of the continuity equation is:
$$\frac{\partial \rho}{\partial t}+\frac{\partial (\rho u)}{\partial x}+\frac{\partial (\rho v)}{\partial y}=0$$
$$\frac{\partial \rho(X)}{\partial T}=0$$ There t=T and X=x+ct. why so?
 
  • #59
big dream said:
$$\frac{\partial \rho(X)}{\partial T}=0$$ There t=T and X=x+ct. why so?
That is the coordinate transformation we defined.

Or are you asking how I was able to recognize that this particular transformation of independent variables would bring about such great simplification in the analysis of the problem?
 
Last edited:
  • #60
Chestermiller said:
That is the coordinate transformation we defined.

Or are you asking how I was able to recognize that this particular transformation of independent variables would bring about such great simplification in the analysis of the problem?
Yes, sir that would be very useful.
 
  • #61
big dream said:
Yes, sir that would be very useful.
The short answer is "intuition, based on many years of experience."

The long answer is: I recognized that, for an observer moving to the left with a constant velocity c, the spatial coordinate in his frame of reference, X=x+ct (the X axis is also moving to the left with the observer) has constant density at every value of X (i.e., at each value of X, the density is not changing with time), since ##\rho=\rho(x+ct)=\rho(X)##. Basically, in the x frame of reference the density profile is traveling to the left like a wave moving at speed c, but in the X frame of reference, the density profile is stationary. This automatically led mathematically to the transformation of independent variables that we used.
 
  • #62
Chestermiller said:
Before doing anything else, I need you to prove to yourself that, if we make the following transformation of variables,

t = T
y = Y
x = X - ct
v = V(X,Y)
u = U(X,Y) - c
p = P(X)

our equations reduce to:
$$\rho=\rho(X)$$
$$\frac{\partial (\rho U)}{\partial X}+\frac{\partial (\rho V)}{\partial Y}=0\tag{1}$$
$$\frac{\partial P}{\partial X}=\mu \frac{\partial ^2U}{\partial Y^2}\tag{2}$$
subject to the boundary conditions ##U=c## and ##V=0## at ##Y=0,h##. These are equivalent to the equations that an observer who is traveling at a constant speed c in the negative x direction would write. This observer would conclude that, as reckoned from his frame of reference, the system is at steady state, with all parameters functions of X and Y only.
Have you considered any scale like U=u/c , V=v/c, X= x/L, Y=y/L to reduce the momentum balance equation from $$ {\partial{\bf u}\over{\partial t}} + ({\bf u} \cdot \nabla) {\bf u} = - {1\over\rho} \nabla p + \gamma\nabla^2{\bf u} + {\gamma}{1\over3}\nabla (\nabla \cdot {\bf u})$$
To $$\frac{\partial P}{\partial X}=\mu \frac{\partial ^2U}{\partial Y^2}\tag{2}$$
or directly take the first term $${\partial{\bf u}\over{\partial t}}=0$$ as the flow is steady. and $$\rho{\bf u} \cdot \nabla {\bf u}={\bf u} \cdot \nabla (\rho{\bf u})=0 $$
still could not eliminate this term, $${1\over3}\nabla (\nabla \cdot {\bf u})$$
or you have considered the momentum balance equation like this $$ {\partial{\bf u}\over{\partial t}} + ({\bf u} \cdot \nabla) {\bf u} = - {1\over\rho} \nabla p + \gamma\nabla^2{\bf u} + {g_{x}} $$ as $$\rho g_{x}=0$$
Or firstly use Galilean transformation then reduce the equation.I am little confused which way to show this momentum balance equation.
 
  • #63
I think I've helped enough on this thread already. I'll leave it up to you to work out the rest of these details.
 
  • #64
I changed my mind because of your post on that other forum. So, here goes.

If we apply our coordinate transformation to the momentum equation, we obtain for the X component the following:
$$U\frac{\partial U}{\partial X}+V\frac{\partial U}{\partial Y}=-\frac{1}{\rho}\frac{\partial p}{\partial X}+\gamma\left[\frac{\partial^2U}{\partial X^2}+\frac{\partial^2U}{\partial Y^2}\right]+\frac{\gamma}{3}\left[\frac{\partial ^2U}{\partial X^2}+\frac{\partial^2V}{\partial X\partial Y}\right]$$
OK so far??
 

Similar threads

  • Advanced Physics Homework Help
Replies
2
Views
2K
  • Programming and Computer Science
Replies
4
Views
2K
Replies
1
Views
4K
Replies
1
Views
1K
  • Introductory Physics Homework Help
Replies
1
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
2
Views
4K
  • Introductory Physics Homework Help
Replies
15
Views
4K
  • Engineering and Comp Sci Homework Help
Replies
5
Views
11K
  • Calculus and Beyond Homework Help
Replies
1
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
2
Views
3K
Back
Top