big dream
$$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial x}\right)_{t,y}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial x}\right)_{t,y}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial x}\right)_{t,y}$$Chestermiller said:You have not carried out the transformation correctly. The starting equations are $$T=t$$$$X=x+ct$$and $$Y=y$$
For any function f of position and time, we start out by writing:$$df=\left(\frac{\partial f}{\partial T}\right)_{X,Y}dT+\left(\frac{\partial f}{\partial X}\right)_{T,Y}dX+\left(\frac{\partial f}{\partial Y}\right)_{T,X}dY$$From this, it follows that:
$$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial t}\right)_{x,y}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial t}\right)_{x,y}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial t}\right)_{x,y}$$
But, in our problem, $$\left(\frac{\partial T}{\partial t}\right)_{x,y}=1$$$$\left(\frac{\partial X}{\partial t}\right)_{x,y}=c$$and $$\left(\frac{\partial Y}{\partial t}\right)_{x,y}=0$$
Therefore, $$\left(\frac{\partial f}{\partial t}\right)_{x,y}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}+c\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$
Now it's your turn. What do you get for $$\left(\frac{\partial f}{\partial x}\right)_{t,y}$$and$$\left(\frac{\partial f}{\partial y}\right)_{t,x}$$
$$\left(\frac{\partial f}{\partial x}\right)_{t,y}=\left(\frac{\partial f}{\partial X}\right)_{T,Y}$$
$$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial T}\right)_{X,Y}\left(\frac{\partial T}{\partial y}\right)_{t,x}+\left(\frac{\partial f}{\partial X}\right)_{T,Y}\left(\frac{\partial X}{\partial y}\right)_{t,x}+\left(\frac{\partial f}{\partial Y}\right)_{T,X}\left(\frac{\partial Y}{\partial y}\right)_{t,x}$$
$$\left(\frac{\partial f}{\partial y}\right)_{t,x}=\left(\frac{\partial f}{\partial Y}\right)_{T,X}$$