Velocity of charged particle in a uniform electric field

AI Thread Summary
A charged particle with a mass of 0.000103 g and a charge of 87 mC moves in a uniform electric field of 4.8 N/C in the x-direction, while its initial velocity is 3.2 × 10^5 m/s in the y-direction. The acceleration in the x-direction is calculated to be 4054368.932 m/s², while there is no acceleration in the y-direction. The final velocity in the x-direction after 0.2 seconds is determined to be 810873 m/s, leading to a total speed of approximately 871731.7804 m/s when combining both velocity components. The discussion emphasizes the importance of separating components and understanding the influence of the electric field on the particle's motion. Accurate calculations and significant figures are also highlighted as critical in arriving at the correct answer.
pcml100
Messages
23
Reaction score
0

Homework Statement



A particle of mass 0.000103 g and charge 87 mC moves in a region of space where the
electric field is uniform and is 4.8 N/C in the x direction and zero in the y and z direction.
If the initial velocity of the particle is given by v_y = 3.2 × 10^5 m/s, v_x = v_z = 0, what is
the speed of the particle at 0.2 s?
Answer in units of m/s.

Homework Equations



E = E_x + E_y

a_x = (q/m)E_x
a_y = (q/m)E_y

a = a_x + a_y

v_f = V_0 + at

The Attempt at a Solution



q = 0.087 C
m = 1.03 * 10^-7 kg
E_x = 4.8 N/C
V_0)y = 3.2 * 10^5 m/s
V_0)x = 0 m/s
V_0)z = 0 m/s
t = 0.2s

a_x = (q/m) E_x = 4054368.932 m/s^2

a_y = 0

a = 4054368.932 m/s^2
 
Physics news on Phys.org
Okay use E=F/Q

Solve for F.

Now use F=ma

Solve for a

Now you have Initial V, acceleration, and t, solve for Final V.

Vf=Vo + at
 
pcml100 said:
q = 0.087 C
m = 1.03 * 10^-7 kg
E_x = 4.8 N/C
V_0)y = 3.2 * 10^5 m/s
V_0)x = 0 m/s
V_0)z = 0 m/s
t = 0.2s

a_x = (q/m) E_x = 4054368.932 m/s^2

a_y = 0

a = 4054368.932 m/s^2
Okay, so you've found the x-component of the acceleration. What's the x-component of the velocity, as a function of t? Then what is the x-component of the velocity when t = 0.2 s?

Hint: Use your kinematics equations.

Another hint: Once you have both the x- and -y components of the velocity, how you do find the magnitude of the velocity (aka the speed)? :wink:

[Edit: JustinLiang beat me to the hint.]
 
E=F/Q
F=QE
ma=QE
a=(QE)/m=4054368.932 m/s^2

Vf=(3.2x10^5) + (4054368.932)(0.2) = 401087.3786 m/s

The system is telling me this answer is wrong. Did I miss anything?

I don't know if the problem is that the electric field is pulling in the x-direction while my initial velocity is in the y-direction.
 
ohhhh! so the initial velocity in the x-direction would be:

Vf = 0 + (4054368.932)(0.2) = 81087.37864 m/s

and

V = sqrt ((81087.37864)2 + (3.2x10^5)2) = 330113.8637 m/s ?
 
pcml100 said:
E=F/Q
F=QE
ma=QE
a=(QE)/m=4054368.932 m/s^2

Vf=(3.2x10^5) + (4054368.932)(0.2) = 401087.3786 m/s
The quoted text in red is the initial velocity in the y direction, not the x!

Keep your components separate for now.

What is vx = vx0 + axt?
I don't know if the problem is that the electric field is pulling in the x-direction while my initial velocity is in the y-direction.
That's right. That means that the particle is accelerating in the x-direction. And since the constant electric field is perpendicular to the y direction, the particle does not accelerate in the y direction.
 
pcml100 said:
ohhhh! so the initial velocity in the x-direction would be:

Vf = 0 + (4054368.932)(0.2) = 81087.37864 m/s

It is 810873m/s not 81087
 
Oh! Thank You for catching that mistake.

My answer now comes down to a final velocity of 871731.7804 m/s. Is this correct?
 
pcml100 said:
My answer now comes down to a final velocity of 871731.7804 m/s. Is this correct?
'Looks good to me. :approve: (A little overkill on the precision though. But yes, that's what I got.)
 
  • #10
collinsmark said:
'Looks good to me. :approve: (A little overkill on the precision though. But yes, that's what I got.)


ha! I know, but the system wants the answer to six significant digits so I kind of have to keep EVERY digit up to the very end.

I cannot thank you both enough for your help and quick responses. Thank you so much!
 
  • #11
JustinLiang said:
Okay use E=F/Q

Solve for F.

Now use F=ma

Solve for a

Now you have Initial V, acceleration, and t, solve for Final V.

Vf=Vo + at

Please take care not to give too much of the answer to the student asking the schoolwork question. Please ask probing questions, provide hints, find mistakes, etc. The student must do the bulk of the work. Thanks.
 
  • #12
berkeman said:
Please take care not to give too much of the answer to the student asking the schoolwork question. Please ask probing questions, provide hints, find mistakes, etc. The student must do the bulk of the work. Thanks.

With all due respect, the input actually helped me solve the problem properly
 
  • #13
pcml100 said:
With all due respect, the input actually helped me solve the problem properly

You mean "easily". What did you learn about how to figure out problems like this on your own? Not much from my vantage point. And helping students learn how to learn is a big goal of the PF HH forums. Please have a look at this thread, where we discuss why the PF HH rules are the way that they are:

https://www.physicsforums.com/showthread.php?t=373889

.
 
Back
Top