mathfied
- 13
- 0
Hi. Having problems with this tricky Heat Equation Question. Managed to do part (a) and would appreciate verification that it's right.
But I can't manage to finish off the second part. I've started it off so please do advice me. Thanks a lot!
QUESTION:
-----------------------------------------
(a)
Show that the steady solution (which is independent of t) of the heat equation,
<br /> \frac{{\partial ^2 \theta }}<br /> {{\partial x^2 }} = \frac{1}<br /> {{\alpha ^2 }}\frac{{\partial \theta }}<br /> {{\partial t}}<br /> where \alpha is a constant, on the interval:
<br /> - L \leqslant x \leqslant L<br /> with conditions: \begin{gathered} \theta ( - L,t) = 0 \hfill \\<br /> \theta (L,t) = T \hfill \\ <br /> \end{gathered} is: \theta = \theta _0 (x) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2}
(b)
Use methods of separation of variables to show that the unsteady solution for
\theta = (x,t) with conditions: \theta ( - L) = T,{\text{ }}\theta (L) = 0,{\text{ }}\theta (x,0) = \theta _0 (x){\text{ is}}:
<br /> \theta (x,t) = \frac{T}<br /> {2}\left[ {1 - \frac{x}<br /> {L}} \right] - 2T\sum\limits_{n = 1}^\infty {\left[ {e^{ - \alpha ^2 n^2 \pi ^2 t/L^2 } \frac{{( - 1)^n \sin (n\pi x/L)}}<br /> {{n\pi }}} \right]}
My attempt:
Part (A)::
-----------------------
Using separation of variables:
\begin{gathered}<br /> Let:\theta = (x,t) = X(x)T(t) \hfill \\<br /> X(x) = Ax + B \hfill \\<br /> T(t) = C \hfill \\<br /> so:X(x)T(t) = (Ax + B)(C) \hfill \\ <br /> \end{gathered}
now to use the conditions:
----------------------------------
\begin{gathered}<br /> when:\theta ( - L,t) = 0, \hfill \\<br /> A(x + L) + B = 0 \hfill \\<br /> A(0) + B = 0,so:B = 0 \hfill \\ <br /> \end{gathered}
\begin{gathered}<br /> when:\theta (L,t) = T \hfill \\<br /> A(x + L) + 0 = T \hfill \\<br /> A(2L) = T \hfill \\<br /> A = \frac{T}<br /> {{2L}} \hfill \\ <br /> \end{gathered}
\begin{gathered}<br /> so: \hfill \\<br /> \theta _0 (x) = \frac{T}<br /> {{2L}}(x + L) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2} \hfill \\ <br /> \end{gathered}
That's part (A) done. is my method to approach the final answer correct?
Part (B)::
-----------------------
I'm having problems here. Can't quite finish the question off. Please could you guide me out here. Thanks.
Using separation of variables:
Let:\theta = (x,t) = X(x)T(t)
\begin{gathered}<br /> unsteady - solution: - \rho ^2 < 0 \hfill \\<br /> X(x) = Ae^{i\rho x} + Be^{ - ipx} = A\cos px + B\sin px \hfill \\<br /> T(t) = Ce^{ - \alpha ^2 \rho ^2 t} \hfill \\<br /> so:X(x)T(t) = (A\cos \rho x + B\sin \rho x)(Ce^{ - \alpha ^2 \rho ^2 t} ) \hfill \\ <br /> \end{gathered}
now to use the conditions:
------------------------------
\begin{gathered}<br /> \theta ( - L) = T:so: \hfill \\<br /> (A\cos \rho (x + L) + B\sin \rho (x + L))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\<br /> (A\cos \rho ( - L + L) + B\sin \rho ( - L + L))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\<br /> (A\cos (0) + B\sin (0))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\<br /> \left[ {A(e^{ - \alpha ^2 \rho ^2 t} )} \right] = T \hfill \\ <br /> \end{gathered}
\begin{gathered}<br /> \theta (L) = 0:so: \hfill \\<br /> (A\cos (2\rho L) + B\sin (2\rho L))(e^{ - \alpha ^2 \rho ^2 t} ) = 0 \hfill \\ <br /> \end{gathered}
<br /> \begin{gathered}<br /> \theta (x,0) = \theta _0 (x) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2}:so: \hfill \\<br /> (A\cos \rho (x + L) + B\sin \rho (x + L))(e^{ - \alpha ^2 \rho ^2 (0)} ) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2} \hfill \\<br /> (A\cos \rho (x + L) + B\sin \rho (x + L))(1) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2} \hfill \\ <br /> \end{gathered}
I'm stuck here. Any ideas on how to approach the final answer (as shown on the question)?
Thanks so much.
But I can't manage to finish off the second part. I've started it off so please do advice me. Thanks a lot!
QUESTION:
-----------------------------------------
(a)
Show that the steady solution (which is independent of t) of the heat equation,
<br /> \frac{{\partial ^2 \theta }}<br /> {{\partial x^2 }} = \frac{1}<br /> {{\alpha ^2 }}\frac{{\partial \theta }}<br /> {{\partial t}}<br /> where \alpha is a constant, on the interval:
<br /> - L \leqslant x \leqslant L<br /> with conditions: \begin{gathered} \theta ( - L,t) = 0 \hfill \\<br /> \theta (L,t) = T \hfill \\ <br /> \end{gathered} is: \theta = \theta _0 (x) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2}
(b)
Use methods of separation of variables to show that the unsteady solution for
\theta = (x,t) with conditions: \theta ( - L) = T,{\text{ }}\theta (L) = 0,{\text{ }}\theta (x,0) = \theta _0 (x){\text{ is}}:
<br /> \theta (x,t) = \frac{T}<br /> {2}\left[ {1 - \frac{x}<br /> {L}} \right] - 2T\sum\limits_{n = 1}^\infty {\left[ {e^{ - \alpha ^2 n^2 \pi ^2 t/L^2 } \frac{{( - 1)^n \sin (n\pi x/L)}}<br /> {{n\pi }}} \right]}
My attempt:
Part (A)::
-----------------------
Using separation of variables:
\begin{gathered}<br /> Let:\theta = (x,t) = X(x)T(t) \hfill \\<br /> X(x) = Ax + B \hfill \\<br /> T(t) = C \hfill \\<br /> so:X(x)T(t) = (Ax + B)(C) \hfill \\ <br /> \end{gathered}
now to use the conditions:
----------------------------------
\begin{gathered}<br /> when:\theta ( - L,t) = 0, \hfill \\<br /> A(x + L) + B = 0 \hfill \\<br /> A(0) + B = 0,so:B = 0 \hfill \\ <br /> \end{gathered}
\begin{gathered}<br /> when:\theta (L,t) = T \hfill \\<br /> A(x + L) + 0 = T \hfill \\<br /> A(2L) = T \hfill \\<br /> A = \frac{T}<br /> {{2L}} \hfill \\ <br /> \end{gathered}
\begin{gathered}<br /> so: \hfill \\<br /> \theta _0 (x) = \frac{T}<br /> {{2L}}(x + L) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2} \hfill \\ <br /> \end{gathered}
That's part (A) done. is my method to approach the final answer correct?
Part (B)::
-----------------------
I'm having problems here. Can't quite finish the question off. Please could you guide me out here. Thanks.
Using separation of variables:
Let:\theta = (x,t) = X(x)T(t)
\begin{gathered}<br /> unsteady - solution: - \rho ^2 < 0 \hfill \\<br /> X(x) = Ae^{i\rho x} + Be^{ - ipx} = A\cos px + B\sin px \hfill \\<br /> T(t) = Ce^{ - \alpha ^2 \rho ^2 t} \hfill \\<br /> so:X(x)T(t) = (A\cos \rho x + B\sin \rho x)(Ce^{ - \alpha ^2 \rho ^2 t} ) \hfill \\ <br /> \end{gathered}
now to use the conditions:
------------------------------
\begin{gathered}<br /> \theta ( - L) = T:so: \hfill \\<br /> (A\cos \rho (x + L) + B\sin \rho (x + L))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\<br /> (A\cos \rho ( - L + L) + B\sin \rho ( - L + L))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\<br /> (A\cos (0) + B\sin (0))(e^{ - \alpha ^2 \rho ^2 t} ) = T \hfill \\<br /> \left[ {A(e^{ - \alpha ^2 \rho ^2 t} )} \right] = T \hfill \\ <br /> \end{gathered}
\begin{gathered}<br /> \theta (L) = 0:so: \hfill \\<br /> (A\cos (2\rho L) + B\sin (2\rho L))(e^{ - \alpha ^2 \rho ^2 t} ) = 0 \hfill \\ <br /> \end{gathered}
<br /> \begin{gathered}<br /> \theta (x,0) = \theta _0 (x) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2}:so: \hfill \\<br /> (A\cos \rho (x + L) + B\sin \rho (x + L))(e^{ - \alpha ^2 \rho ^2 (0)} ) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2} \hfill \\<br /> (A\cos \rho (x + L) + B\sin \rho (x + L))(1) = \frac{{T(1 + \frac{x}<br /> {L})}}<br /> {2} \hfill \\ <br /> \end{gathered}
I'm stuck here. Any ideas on how to approach the final answer (as shown on the question)?
Thanks so much.