Verify eigenvalues of a TST matrix

  • Thread starter Thread starter binbagsss
  • Start date Start date
  • Tags Tags
    Eigenvalues Matrix
binbagsss
Messages
1,291
Reaction score
12

Homework Statement



I have ##A=TST(-1,2-1),## and I need to show that an eigenvector of A is,##Y_{j}=sin(kj \pi / J).##
and then find the full set of eigenvalues of A.

The matrix A comes from writing ##-U_{j-1}+2U-U_{j+1}=h^{2}f(x_{j}), 1\le j \le J-1##, in the form ##AU=b##

Homework Equations


[/B]
The above.

The Attempt at a Solution



Since the TST is a j-1 x j-1 dimensional, I'm unsure how to approach the algebra.

I'm unsure how to get started, and the notation is confusing me too- I know that the eigenvalues of a ##TST(\alpha, \beta)## are ##\alpha+2\beta cos(k\pi/m+1)## where ##k=1...m##,

so here do I need to take ##k=j## and ##m+1=J##, but this doesn't really make sense to be as in the above, ##k## and ##m## are anything just with the contrainst ##k=1...m##, aren't they?

i'm unsure how to construct the eigenvector ##Y##, should it be ##AY_{j}= A (Y_{0},...,Y_{J})^{T}##,
so ##j## runs from ##1## to ##J-1##?

Any help really appreciated ! Thanks a lot !
 
Physics news on Phys.org
binbagsss said:

Homework Statement



I have ##A=TST(-1,2-1),## and I need to show that an eigenvector of A is,##Y_{j}=sin(kj \pi / J).##
and then find the full set of eigenvalues of A.

The matrix A comes from writing ##-U_{j-1}+2U-U_{j+1}=h^{2}f(x_{j}), 1\le j \le J-1##, in the form ##AU=b##

Homework Equations


[/B]
The above.

The Attempt at a Solution



Since the TST is a j-1 x j-1 dimensional, I'm unsure how to approach the algebra.

I'm unsure how to get started, and the notation is confusing me too- I know that the eigenvalues of a ##TST(\alpha, \beta)## are ##\alpha+2\beta cos(k\pi/m+1)## where ##k=1...m##,

so here do I need to take ##k=j## and ##m+1=J##, but this doesn't really make sense to be as in the above, ##k## and ##m## are anything just with the contrainst ##k=1...m##, aren't they?

i'm unsure how to construct the eigenvector ##Y##, should it be ##AY_{j}= A (Y_{0},...,Y_{J})^{T}##,
so ##j## runs from ##1## to ##J-1##?

Any help really appreciated ! Thanks a lot !

What does TST mean?
 
I don't know what TST means either. Don't assume that an acronym you use is understood by all.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top