darida
- 35
- 1
Homework Statement
Show that
Q_{1}=\frac{1}{\sqrt{2}}(q_{1}+\frac{p_{2}}{mω})
Q_{2}=\frac{1}{\sqrt{2}}(q_{1}-\frac{p_{2}}{mω})
P_{1}=\frac{1}{\sqrt{2}}(p_{1}-mωq_{2})
P_{2}=\frac{1}{\sqrt{2}}(p_{1}+mωq_{2})
(where mω is a constant) is a canonical transformation by Poisson bracket test. This requires evaluating six simple Poisson brackets.
2. The attempt at a solution
[Q_{1},P_{1}]=[\frac{∂Q_{1}}{∂q_{1}}\frac{∂P_{1}}{∂p_{1}}-\frac{∂Q_{1}}{∂p_{1}}\frac{∂P_{1}}{∂q_{1}}]+[\frac{∂Q_{1}}{∂q_{2}}\frac{∂P_{1}}{∂p_{2}}-\frac{∂Q_{1}}{∂p_{2}}\frac{∂P_{1}}{∂q_{2}}]
.
.
.
etc
Correct?