Verifying Line Integrals Using Vector Value Functions

yungman
Messages
5,741
Reaction score
294
I want to verify I am doing this correctly first:

Evaluate##\int_c (x^2ydx+xdy)## where the line is from (1,2) to (0.0)

My method is different from the book, I am using vector value function method where ##<x(t),y(t)>-(x_0,y_0>=t\frac {d\vec r}{dt}## and ##\vec r=\hat x x(t)+\hat y y(t)## and ##\vec r'(t)= \hat x \frac{dx(t)}{dt}+\hat y \frac{dy(t)}{dt}##

We know ##\vec r_0=<1,2>\;\Rightarrow\; \vec r(t)=<1,2>+t(\hat x \frac{dx(t)}{dt}+\hat y \frac{dy(t)}{dt})##

Use 0≤t≤1 ##\Rightarrow x=1-t## and ##y=2-2t##. Therefore ##\vec r'(t)=\frac{d\vec r}{dt}=-\hat x -\hat 2y##. And ##\vec r(t)= <1,2>+t<-1,-2>=\hat x (1-t)-\hat y (2-2t)##. And ##\frac{dx(t)}{dt}=-1## and ##\frac {d y(t)}{dt}=-2##.

Therefore ##\int_c (x^2ydx+xdy)=\int_0^1 [(1-t)^2 (2-2t)(-dt)+(1-t)(-2dt)]=-\frac 3 2##

I know the final integral and the answer is correct according to the book already. That I don't need to verify. I just want to make sure the way I use vector value function approach is correct.
 
Physics news on Phys.org
the more basic question is that from my experience in EM, the normal way of line integral is ##\int_c f(xyz) dl## where l is the path of the integration. But this problem is using dx and dy and the book substitute t into x and y instead of using vector value function like I do. So which way is correct?
 
yungman said:
the more basic question is that from my experience in EM, the normal way of line integral is ##\int_c f(xyz) dl## where l is the path of the integration. But this problem is using dx and dy and the book substitute t into x and y instead of using vector value function like I do. So which way is correct?

Whether you explicitly write things as vectors or just keep track of the parameter dependence without doing so doesn't make any difference. Both ways are correct.
 
Thanks.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top