Vertex factor for W^- -> e + anti neutrino_e

  • Thread starter Thread starter Mithra
  • Start date Start date
  • Tags Tags
    Vertex
Mithra
Messages
16
Reaction score
0
Hi, I'm wondering if anyone can give me some advice on working out the vertex factor from a lagrangian. I think I know what I should be doing however it isn't quite getting the right answer so if anyone could guide me that would be great.

\mathcal{L}_{W^-e^-\nu_e} = \frac{g_2}{\sqrt{2}}[\overline{\nu}_{eL}W^+_{\mu}\gamma^{\mu}e_L + \overline{e}_L W^-_{\mu}\gamma^{\mu}\nu_{eL}]

Initially I just ignored the fields and so got a factor
g_2 \sqrt{2} \gamma^\mu
however I know this isn't right. From my notes I can see that there should be a 1-gamma^5 included, along with the factor being 1/(2*sqrt(2)) so I thought maybe I needed to convert the e_L s into just e using the helicity conversion

e_L = \frac{1-\gamma^5}{2}

but the factors still do not seem to be coming out correctly. I'm thinking maybe I should convert the W^(+/-) into W^1/W^2 but that doesn't look like its going to be hugely successful. I haven't yet changed the neutrino fields from left-handed as I assume neutrino fields are generically left handed anyway?

Any advice would be great, thanks!
 
Physics news on Phys.org
multiply lagrangian by i,put plane wave form for those operators.Also write the amplitude in two spinors form by using those chiral operator.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top