Very Simple Conceptual Question About Rolling

AI Thread Summary
The discussion centers on the principle that the velocity of the contact point of a rolling wheel is zero relative to a stationary observer. While the wheel translates horizontally, at the exact moment of contact with the ground, the point on the wheel has zero velocity despite having non-zero acceleration. This means that while the average velocity of the wheel is not zero, the contact point does not move relative to the surface at that instant. The distinction is made between the contact point and the surface speed of the wheel, which is relevant for understanding rolling motion. Overall, the clarification emphasizes the difference between instantaneous velocity at the contact point and the wheel's overall motion.
Derezzed
Messages
2
Reaction score
0
Hello everybody,
I am having a hard time understanding a very simple principle involving a rolling wheel. I know that the velocity at the bottom "contact point" of a rolling wheel is zero relative to a stationary observer.. yet I don't see how this is true.
So I made a quick sketch and here is my reasoning: As the wheel rolls, it translates horizontally over time. The contact point is no exception. Thus it must have a non-zero velocity, otherwise the wheel is stationary. Basically, the 'delta d'/dt will give the velocity of the contact point, which is non-zero. Why am I wrong? Any light anybody could shed on the matter would be much appreciated!
http://img130.imageshack.us/img130/4258/rolling.png

Uploaded with ImageShack.us
 
Last edited by a moderator:
Physics news on Phys.org
At any instantaneous moment in time, the relative speed of point of the surface of the wheel in contact the ground is zero, this is different than the 'contact point', which is the point where the wheel touches the ground independent of movment at the wheels surface. The 'contact point' (often called 'contact patch' in the case of tires) moves at the same speed as the wheel. The wheel surface speed relative to the center of the wheel is the same as the speed of the wheel wrt the ground. The surface speed at the bottom of the wheel wrt ground is zero, while the surface speed at the of the wheel wrt ground is 2 times the wheels speed wrt ground.
 
Last edited:
Welcome to PF!

Hello Derezzed! Welcome to PF! :smile:

see http://en.wikipedia.org/wiki/Cycloid" , including the .gif :wink:
 
Last edited by a moderator:
Thanks everybody for the quick and effective responses!
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top