sophiecentaur said:
What was the context? Perhaps in the services as a trainee operator?
Probably close. High school electronics class, taught by a retired Merchant Marine radioman turned engineer turned teacher.
After DC circuits analysis we of course moved into AC. Learned first about exponential charging , decay, time constants , effect of differentiator and low pass on step and triangle functions. Became skilled with slide rule and 1/e to work them.
Then he introduced us to rotating phasors to represent sines, real and imaginary components and operator j , and rectangular-polar conversion by slide rule.
He drilled us nearly to death doing sinewave AC circuit analysis with slide rules. He didn't take us into three phase power, instead into tubes and radio, transmission lines and antennas, finally transistors.
Setting was lab environment . We were two boys to a bench each bench with an oscilloscope, meters, power supplies, a "trainer" rack with tube sockets and patch panels to build circuits. By end of 11th grade we boys knew every resistor in an AM or FM radio reciever & transmitter and were handy with Smith charts.
Teacher was a very hands-on type guy , Monday was lecture day, Tuesday and Wednesday a lab covering the previous days' lectures, Thursday we wrote and presented our reports..
Friday was project day, everybody had to build something for his personal use from surplus electronic parts. He had access to leftovers from Cape Canaveral so there was no shortage of those . I built several tube hi-fi amplifiers and a Wheatstone bridge for measuring precision resistors (this was early 60's when digital meters were exotic rarities).
So we learned basic electronics and test equipment;
how to do an experiment and write up an organized report with purpose, method, presentation of data, observations and conclusions, ;
and how to build something starting with a blank aluminum chassis and Greenlee tube socket punch. .
Was it a disservice to launch us boys without the advanced math ?
I think not, for when in college i saw how calculus described what i had been doing with just arithmetic and operator j it was quite a thrill. Made me appreciate the genius of my high school teacher . I found myself explaining things to other students.
I'd not have made it through college antennas class had not we high school boys built that parallel wire transmission line (from #10 copper house wire on a 2X4) and done "slotted line" SWR & reflection coefficient measurements .
Besides, what're you going to do with a bunch of tenth graders who are just learning 2nd year algebra and trigonometry ?
Teach them to work with the tools they have.
As a teacher you know how a good one can affect a kid's life. He got me into EE and over the years i met several other of his students who were similarly influenced.
He made things intuitive for us boys.
Sorry for the ramble - it's not about me it's about " how does one teach ?"
For me something real makes the math intuitive, not the other way round. That's why i say so often here: "When your intuition leads you to the correct math you're beginning to understand".
Math closes the feedback loop and tells me i have achieved a valid mental model for something.
Perhaps my upbringing was weird but it's the only one I've got. I reckon it's why I'm a bit weird.
old jim