Calculate Volume Flow Rate: Pressure & Speed

AI Thread Summary
To calculate the volume flow rate in the given lab project, the relationship between pressure and speed can be established using Poiseuille's law, which describes laminar flow in tubes. The law indicates that the flow rate is directly proportional to the pressure difference and the fourth power of the radius of the tube, while inversely proportional to the fluid's viscosity and the length of the tube. Given the known parameters—tube radius, fluid density, and pressure—one can derive the flow speed. The formula can be applied to determine how pressure influences the flow rate in the tubes. Understanding these principles is essential for accurate calculations in fluid dynamics.
onqun
Messages
12
Reaction score
0
Hi there, I have a lab project. Part of the project is to calculate the volume flow rate, I have 2 tubes,radius' are known , density of the fluid is known and pressure is known. How can i relate the pressure to speed?
 
Physics news on Phys.org
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Thread 'Recovering Hamilton's Equations from Poisson brackets'
The issue : Let me start by copying and pasting the relevant passage from the text, thanks to modern day methods of computing. The trouble is, in equation (4.79), it completely ignores the partial derivative of ##q_i## with respect to time, i.e. it puts ##\partial q_i/\partial t=0##. But ##q_i## is a dynamical variable of ##t##, or ##q_i(t)##. In the derivation of Hamilton's equations from the Hamiltonian, viz. ##H = p_i \dot q_i-L##, nowhere did we assume that ##\partial q_i/\partial...
Back
Top