Volume of a Region inside a cylinder and sphere (Symbolic)

xipe
Messages
9
Reaction score
0

Homework Statement


Suppose W is the region inside the cylinder x^2+y^2=a^2 and inside the sphere x^2+y^2+z^2=b^2, where 0<a<b.
Set up an iterated integral for the volume of W

Homework Equations


x^2+y^2+z^2=b^2
x^2+y^2=a^2
0<a<b

The Attempt at a Solution


I converted to cylindrical coordinates and tried to set up the triple integral as follows
[rdzdthetadr], where -sqrt(b^2-r^2)<=z<=sqrt(b^2-r^2), 0<=theta<=2pi, 0<=r<=a. Am I at least on the right track for the integral? Any help is seriously appreciated. Thank you! :)
P.S. (<= is meant to be 'less than or equal to'), just figured I'd clarify :)
 
Physics news on Phys.org
xipe said:

Homework Statement


Suppose W is the region inside the cylinder x^2+y^2=a^2 and inside the sphere x^2+y^2+z^2=b^2, where 0<a<b.
Set up an iterated integral for the volume of W

Homework Equations


x^2+y^2+z^2=b^2
x^2+y^2=a^2
0<a<b

The Attempt at a Solution


I converted to cylindrical coordinates and tried to set up the triple integral as follows
[rdzdthetadr], where -sqrt(b^2-r^2)<=z<=sqrt(b^2-r^2), 0<=theta<=2pi, 0<=r<=a. Am I at least on the right track for the integral? Any help is seriously appreciated. Thank you! :)
P.S. (<= is meant to be 'less than or equal to'), just figured I'd clarify :)
That looks correct.
 
Thank you for the reply. I spend way longer than I should have on this problem. I thought it was more complicated than this, so I am happy that the solution was easier than expected. Cheers! :)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top