Volume of the intersection of two cylinders by polar co-ordinates

cybermask
Messages
5
Reaction score
0
Volume of the intersection of two cylinders by cylinderical co-ordinates

Homework Statement




find Volume of the intersection of two cylinders by cylindrical co-ordinates


The Attempt at a Solution



IN the attached file I found it's 8(a^3)/3
It should be 16 not 8
 

Attachments

Last edited:
Physics news on Phys.org
I know that the mistake may be trivial but can anyone give me any comment!1
 
Why do you think the upper limit of the dz integration is r*cos(theta)? Don't you have z=sqrt(a^2-y^2)=sqrt(a^2-r^2*sin(theta)^2)?
 
Last edited:
Dick said:
Why do you think the upper limit of the dz integration is r*cos(theta)? Don't you have z=sqrt(a^2-y^2)=sqrt(a^2-r^2*sin(theta)^2)?

But in the first octent
x^2 + y^2 = r^2
y^2 + z^2 = r^2

so z=x=rcos(theta)

Isn't it?
 
That's only true along the curve where the two cylinders intersect. It's not true everywhere on the surface in the first octant.
 
Dick said:
That's only true along the curve where the two cylinders intersect. It's not true everywhere on the surface in the first octant.


Thanks Thanks Thanks
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top