I Wedge product of basis vectors

Kevin McHugh
Messages
318
Reaction score
165
Is there a set of relationships for the wedge product of basis vectors as there are for the dot product and the cross product?

i.e. e1*e1 = 1
e1*e2 = 0

e1 x e2 = e3
 
Mathematics news on Phys.org
It's bilinear, associative and ##v \wedge v=0## (if char ##\mathbb{F} \neq 2##). In general it's ##a \wedge b = (-1)^{nm} b \wedge a## for ##a \in \Lambda^n(V)=
\underbrace{V \wedge V \wedge \ldots \wedge V}_{n\ times}## and ##b \in \Lambda^m(V)= \underbrace{V \wedge V \wedge \ldots \wedge V}_{m\ times}##
 
Are those components or basis vectors? Can you explain that in English?
 
It is meant as for arbitrary vectors. So especially for basis vectors, too, if you like. In coordinates, it would be some equivalence classes of tensor products, but I don't know how to press this equivalence relation into coordinates. It means basically that the wedge-product or better exterior product is a tensor product, but some tensors are considered to be equal, because the relations below have to be met.

If we have a vector space ##V## over a field ##\mathbb{F}## in which ##1+1 \neq 0## holds, then for ## a,b,c \in V## and ##\lambda \in \mathbb{F}## the following is true:
  1. ##(a+b) \wedge c = a\wedge c + b \wedge c##
  2. ##\lambda (a \wedge b) = (\lambda a) \wedge b = a \wedge (\lambda b)##
  3. ##a \wedge (b \wedge c) = (a \wedge b) \wedge c##
  4. ##a \wedge a = 0##
  5. ##a_1 \wedge \ldots \wedge a_n \wedge b_1 \wedge \ldots \wedge b_m = (-1)^{nm} b_1 \wedge \ldots \wedge b_m \wedge a_1 \wedge \ldots \wedge a_n##
The first two are called linearity, which together with the fifth becomes multi-linearity (linear in all "factors"), the third one is associativity, the fourth is a special case of the fifth together with the fact, that ##1+1 \neq 0##, which is said as the characteristic of ##\mathbb{F}## is not two, and the fifth alone can be called graduated commutativity, i.e. it determines what happens, if we change the order of "factors". I don't know how to put the formulas in other English words as their names are.

Perhaps you want to read the Wikipedia entry on it: https://en.wikipedia.org/wiki/Exterior_algebra
 
Kevin McHugh said:
Are those components or basis vectors?

The first question is whether ##a \wedge b## is something (e.g. a vector or a scalar) in the same vector space that contains ##a## and ##b##.

I'd say no. For ##a## and ##b## in a a vector space ##V##, in order to define ##a \wedge b##, you must define a different mathematical structure than ##V## itself. ( As an analogy, we can use two real numbers x1, x2 to define an interval [x1,x2], but "an interval" is a different thing than a single real number. )

By contrast, the cross product operation (in 3 dimensions) ##a \times b## does produce a result that is also a element of the the same vector space ##V## that contains ##a## and ##b##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top