What are the critical numbers of the function f(x) = x*sqrt2x+1?

  • Thread starter Thread starter npellegrino
  • Start date Start date
  • Tags Tags
    Numbers
npellegrino
Messages
17
Reaction score
0
Find all critical numbers if any.

I found the critical number -1/3 , just checking my work. Any input would be great.

the function f(x) = x*sqrt2x+1
f'(x) = (3x+1)/sqrt2x+1

3x+1 = 0 , x = -1/3
 
Physics news on Phys.org
Critical numbers are -1/3 and -1/2
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top